【人脸表情识别】 PCA+SVM人脸表情识别评分系统【含Matlab源码 593期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)

⛄一、简介

1 PCA-SVM原理
1.1 主成分分析PCA
本文处理的所有原始图片都是112x 92大小的pgm格式图片, 每幅图片包含10304个像素点, 每一行代表一个样本,维数就是10304维。维数过大使得数据处理工作十分复杂,同时,图片特征之间的强相关性还会导致“维数灾难”。快速高效的人脸识别,其关键在于提取到精准表征人脸的特征。从人脸图像中找出最能表征人脸的特征空间,是主成分分析(Principal Component Analysis, PC A) [2] 在人脸特征提取中的基本思想。在这个过程中, 不能表征人脸的属性会被剔除(降维的过程),也就是在一个高维特征空间中利用一组系数对特征加权,来重新表示一张人脸图片。PCA过程的数学描述如下:
在这里插入图片描述
在这里插入图片描述
1.2 支持向量机SVM
给定训练集,在特征空间上找到一个分类超平面,将样本点分到不同的类。存在唯一的分类超平面,使得样本点距离分类超平面的距离最大。其中,距离超平面最近的点为该超平面的支持向量。找到该超平面后,对于待测点,通过计算该点相对于超平面的位置进行分类。其中,一个点距离分类超平面的距离越大,表明分类预测的确信程度越高。
支持向量机(Support Vector Machine, SVM) 需要做的就是找出一个超平面, 使得在两类样本点能完全分离的情况下,尽可能使样本边界的距离最大。
在这里插入图片描述
SVM是一个两类分类器, 而大多数实际分类问题都是多类分类问题, 那么就需要利用SVM这个二分类器去实现一个多类问题的分类。本文人脸识别程序中, 采用的是一对一的投票策略, 即在任意两类样本之间设计一个SVM分类器,分类为得票最多的类。

2 MATLAB工具软件
本文通过MATLAB工具软件, 对PC A-SVM人脸识别方法进行仿真计算。MATLAB人脸识别程序的使用界面上分为三个按钮:“测试准确率”“选择照片”和“图像匹配”,既可以方便操作,又可以使识别结果直观地显示出来。点击“开始运行”按钮调用的是主函数face.m, 对人脸数据进行处理; 点击“选择照片”按钮调用子函数GUl open, 用户可以在相应的文件路径下选择人脸照片; 点击“人脸识别”按钮调用子函数GUI reg, 通过每张图片所对应的标签来进行匹配, 从而得出识别结果。

3 PCA-SⅤM人脸识别模型的建立
3.1人脸库构建
人脸识别模型的建立首先需要适当的人脸库。本文分两步构建人脸库。
(1) 选择OR L人脸数据库加入本文人脸库, 其中包含40个人的每人10张人脸图片, 一共400张图片, 每张大小是112×92像素, 图片格式是pgm。
(2) 作者利用电脑摄像头拍了10张本人的照片, 将这10张图片的格式转化为pgm格式, 同时大小也转化为112×92像素,加入本文人脸库。
3.2训练集数据处理
这里将每个人的前5张人脸图片作为训练集,后5张人脸图片作为测试集。训练集数据处理步骤如下:
(1) 读入训练集数据, 储存在矩阵f_matrix(205*10304) 中。
(2) 对训练集数据进行PC A降维, 本文选择的降维维数是100。
(3)规范化特征数据,将同一个样本中的不同维度归一化,从而对于不同的属性之间也可以进行比较。
这里特别增加了一个显示特征脸的步骤。由于数据降至100维,在低维空间中的基就是100张特征脸,其他所有经过降维的脸都可以通过这100张特征脸线性表示。图1显示了前10个特征脸。
在这里插入图片描述
图1 特征脸显示
3.3 参数选择
在PCA-SVM人脸识别模型建立中, 参数取值如下:
(1) n persons:样本包含41个人的人脸, 将n persons设置为41。
(2)flag:flag为0时子函数ReadFace.m读取训练样本数据, flag为1时读取测试样本数据。
(3) k:表示降维至k维。该参数在子函数fast PC A.m中以输入参数出现, 在后面的SVM训练中也有用处。k值与gamma值有很大关联, 这里经过反复调整将k设置为100。
(4) low vec:经过降维后的图像数据pc a face的最小值, 通过设置low new,即新的边界的下限,对数据进行归一化处理。
(5) up vec:经过降维后的图像数据pc a face的最大值, 通过设置up new, 即新的边界的上限, 对数据进行归一化处理。
(6)核函数:本文选择的是高斯核函数。
(7) gamma:参数gamma是选择高斯核函数RBF作为核函数后该函数自带的一个参数。它隐含地决定了数据映射到新的特征空间后的分布。gamma越大, 支持向量越少, 反之支持向量越多。支持向量的个数直接影响到训练与预测的速度。gamma如果设置得很大, 会使得高斯分布显得高而窄,只作用于支持向量样本附近,对于未知样本的分类效果很差,最终会导致训练准确率很高,而识别准确率很低的结果,即过拟合。而gamma设置过小, 则会造成平滑效应过大, 对于噪声不敏感。本文设置参数gamma时, 在10-3~103的范围依次尝试,最终设置为0.01。
(8)c:参数c可以理解为惩罚参数,类似于正则化中一的作用。c越大,意味着拟合非线性的能力越强,但是容易入出现过拟合的情况,而c过小会导致出现欠拟合的情况,总而言之,c过大或者过小,泛化能力都会变差。本文设置参数c为1。

4 PCA-SⅤM人脸识别模型的测试
测试时,首先读取测试数据,类似于处理训练数据,需要对测试数据进行降维和归一化处理,然后利用训练所得的模型对测试数据集进行分类识别。将识别结果与本身自带的标签(即这是第几个人的人脸图片)进行比对,可以获得识别准确率。测试结果表明, 基于PCA-SVM的人脸识别方法准确率为83.9024%。这里选取第8个人的人脸图片作为示例,可以看到在最终的人脸识别阶段可以准确地进行人脸识别。
备注:简介部分仅作为理论参考,与本文程序和运行结果略有出入。

⛄二、部分源代码

clear;
clc;
close all;
%获取原始图片

m=1;
%选择样本图像库里面的图片
n=num2str(m);
k=strcat(n,‘.jpg’);
i=imread(k);
I=rgb2gray(i);
BW=im2bw(I); %利用阈值值变换法将灰度图像转换成二进制图像
figure(1);
imshow(BW);
%最小化背景
[n1 n2]=size(BW);
r=floor(n1/10);
c=floor(n2/10);
x1=1;x2=r;
s=rc;
switch m
case 1
yan=80; biao=60;
case 2
yan=40; biao=30;
case 3
yan=70; biao=100;
case 4
yan=60; biao=50;
case 5
yan=90; biao=60;
case 6
yan=50; biao=70;
case 7
yan=90; biao=40;
case 8
yan=70; biao=80;
case 9
yan=70; biao=50;
case 10
yan=70; biao=90;
end
zongfen=yan+biao;
zongfen=zongfen
0.55;
for i=1:10
y1=1;y2=c;
for j=1:10
if(y2<=c || y2>=9c) || (x11 || x2r10)
loc=find(BW(x1:x2,y1:y2)==0);
[o p]=size(loc);
pr=o*100/s;
if pr<=100
BW(x1:x2,y1:y2)=0;
r1=x1;r2=x2;s1=y1;s2=y2;
pr1=0;
end
imshow(BW);
title(‘图像识别分析中 … …’);
set(gcf,‘unit’,‘centimeters’,‘position’,[10 5 17 15])
end
y1=y1+c;
y2=y2+c;
end
x1=x1+r;
x2=x2+c;
end
figure(2)
imshow(BW)
title(‘图像识别分析完毕’);
set(gcf,‘unit’,‘centimeters’,‘position’,[10 5 17 15])
%人脸识别
L=bwlabel(BW,8);
BB=regionprops(L,‘BoundingBox’);
BB1=struct2cell(BB);
BB2=cell2mat(BB1);

[s1 s2]=size(BB2);
mx=0;
for k=3:4:s2-1
p=BB2(1,k)BB2(1,k+1);
if p>mx && (BB2(1,k)/BB2(1,k+1))<1.8
mx=p;
j=k;
end
end
%-----人脸匹配
%-----输入:细胞结构体数据Cell_all(包括样本集合,特征值与特征向量)
% 想要识别的人脸(彩色图像)
%-----输出:匹配的结果
%-----------------------------------
function FaceFind = facefind(Cell_all,img2find)
%细胞结构体的调用
img_all = Cell_all{1};
[m1,n1] = size(img_all);
V = Cell_all{2};
D = Cell_all{3};
namud = 0.5; %图片缩小的倍数
%对需要识别的图像进行灰度等的处理
pic = rgb2gray(img2find); %灰度处理
pic = imresize(pic,namud); %变换大小
[m2,n2] = size(pic);
pic = reshape(pic,1,m2
n2); %重新排列
pic = double(pic)/255;
pic_done = picVD; %处理完的数据
%% 归一化 --》避免运算出现特别大的数据
Ma = max(max(pic_done));
Mi = min(min(pic_done));
pic_done = pic_done/(Ma - Mi);
%%
for i=1:m1
% 归一化 --》避免运算出现特别大的数据
Ma1 = max(img_all(i,:));
Mi1 = min(img_all(i,:));
img_all(i,:) = img_all(i,:)/(Ma1 - Mi1);
%求范数–》把他们之间的几何距离作为评判与哪一个人脸最近的标准
error(i) = norm(img_all(i,:)-pic_done);
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]李珊,邓伟洪.深度人脸表情识别研究进展[J].中国图象图形学报. 2020,25(11)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 9
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
人脸识别是一项典型的模式识别任务,PCA+SVM是其中一种常用的方法,下面是一个简单的PCA+SVM人脸识别程序的示例: 1. 数据集准备 首先需要准备一个人脸数据集,一般包括训练集和测试集,每个样本都是一个人的人脸图像。可以使用公开数据集如AT&T人脸数据集、LFW人脸数据集等。 2. 特征提取 对于每个人脸图像,需要提取出其特征向量。PCA(Principal Component Analysis)是一种常用的特征提取方法,可以将高维的图像数据转换为低维的特征向量。具体步骤如下: (1)将所有训练样本按列组成一个矩阵X; (2)对X进行中心化处理,即将每一列都减去其均值; (3)对中心化后的X求协方差矩阵C; (4)对C进行特征值分解,得到特征值和特征向量; (5)选择前k个特征向量组成投影矩阵W; (6)对每个样本进行投影,得到其k维特征向量。 3. 训练模型 使用SVM(Support Vector Machine)作为分类器,对训练集进行分类器训练。SVM是一种二分类模型,可以将多分类问题转化为多个二分类问题。具体步骤如下: (1)将每个样本的特征向量和标签组成训练数据; (2)使用训练数据训练SVM分类器。 4. 测试模型 使用测试集对训练好的模型进行测试,计算分类准确率。 5. 代码实现 以下是一个简单的PCA+SVM人脸识别程序的Python实现代码: ``` python import numpy as np from sklearn.decomposition import PCA from sklearn.svm import SVC # 加载训练集和测试集 train_data = np.load('train_data.npy') train_label = np.load('train_label.npy') test_data = np.load('test_data.npy') test_label = np.load('test_label.npy') # 特征提取:使用PCA将图像数据转换为特征向量 pca = PCA(n_components=100) train_feature = pca.fit_transform(train_data) test_feature = pca.transform(test_data) # 训练模型:使用SVM进行分类器训练 svm = SVC(kernel='rbf', C=1, gamma='scale') svm.fit(train_feature, train_label) # 测试模型:使用测试集进行预测 predict_label = svm.predict(test_feature) accuracy = np.mean(predict_label == test_label) print('Accuracy:', accuracy) ``` 上述代码中,train_data和test_data分别是训练集和测试集的图像数据,train_label和test_label分别是训练集和测试集的标签,即对应的人脸ID。PCA的n_components参数设为100表示将图像数据转换为100维的特征向量。SVM的kernel设置为rbf表示使用高斯核函数,C为惩罚参数,gamma为核函数参数。最后计算分类准确率并输出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值