基于GWO灰狼优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 GRU网络

4.3 注意力机制(Attention)

4.4 GWO优化

5.算法完整程序工程


1.算法运行效果图预览

优化前

优化后

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................
            r1      = rand; 
            r2      = rand;
            A3      = 2*a*r1-a; %
            C3      = 2*r2; %
            D_delta = abs(C3*dltx(j)-xpos(i,j)); %
            X3      = dltx(j)-A3*D_delta; %           
            
            xpos(i,j) = (X1+X2+X3)/3;%

            if xpos(i,j)>=Lmax(j)
               xpos(i,j)=Lmax(j);
            end
            if xpos(i,j)<=Lmin(j)
               xpos(i,j)=Lmin(j);
            end
 
        end
    end
end

LR             = Alpx(1)
numHiddenUnits = floor(Alpx(2))+1

....................................................
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;


%网络结构
analyzeNetwork(Net)


figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);


save R2.mat Num2 Tat_test T_sim2 

136

4.算法理论概述

       时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、GRU以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

4.1卷积神经网络(CNN)在时间序列中的应用

       在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

       CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 GRU网络

      GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。 

       GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt​并更新隐藏状态ht​。其核心创新在于引入了两个门控机制:更新门(Update Gate)重置门(Reset Gate)

4.3 注意力机制(Attention)

         注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。              

4.4 GWO优化

        灰狼优化(Grey Wolf Optimizer, GWO)是一种受到灰狼社群行为启发的全球优化算法,由Seyedali Mirjalili等于2014年提出。它模仿了灰狼在自然界中的领导层次结构、狩猎策略以及社会共存机制,以解决各种复杂的优化问题。与遗传算法类似,GWO也是基于种群的优化技术,但其独特的搜索策略和更新规则使其在处理某些类型的问题时展现出不同的优势。

        在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近.

5.算法完整程序工程

OOOOO

OOO

O

  • 28
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值