【万用表识别】数字仪表识别【含Matlab源码 693期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)

⛄一、简介

1 灰度化 (grayscale)

将彩色图像转化为灰度图像的过程称为图像灰度化。彩色图像中的像素值由RGB三个分量决定,每个分量都有0-255(256种)选择,这样一个像素点的像素值可以有1600万种可能(256256256),而灰度图的像素点的像素值是RGB三个分量值相同的一种特殊的彩色图像, 只有256种可能。所以在图像处理中,往往将各种图像首先灰度化成灰度图像以便后续处理,降低计算量。灰度是指只含亮度信息,不含色彩信息的图像。黑白照片就是灰度图,特点是亮度由暗到明,变化是连续的。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征,

使用灰度图的好处:
① RGB的值都一样。
② 图像数据即调色板索引值,就是实际的RGB值,也就是亮度值。
③ 因为是256色调色板,所以图像数据中一个字节代表一个像素,很整齐。
所以,做图像处理时一般都采用灰度图。
要表示灰度图,就需要把亮度值进行量化,有四种方法:

(1)分量法
将彩色图像中的三分量的亮度作为三个灰度图像的灰度值,可根据应用需要选取一种灰度图像。
(2)最大值法
将彩色图像中的三分量亮度的最大值作为灰度图的灰度值。
(3)均值法
将彩色图像中的三分量亮度求平均得到灰度图的灰度值。
(4)加权平均法
根据重要性及其它指标,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,按下式对RGB三分量进行加权平均能得到较合理的灰度图像,f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j))。

2 二值化(binaryzation)

图像的二值化是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果。将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。在数字图像处理中,二值图像占有非常重要的地位,首先,图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。其次,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像。
二值化的常用算法有:

全局二值化: 一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个全局的阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将大于T的像素群的像素值设定为白色(或者黑色),小于T的像素群的像素值设定为黑色(或者白色)。全局二值化,在表现图像细节方面存在很大缺陷。为了弥补这个缺陷,出现了局部二值化方法。

局部二值化:按照一定的规则将整幅图像划分为N个窗口,对这N个窗口中的每一个窗口再按照一个统一的阈值T将该窗口内的像素划分为两部分,进行二值化处理。局部二值化也有一个缺陷。这个缺陷存在于那个统一阈值的选定。这个阈值是没有经过合理的运算得来,一般是取该窗口的平局值。这就导致在每一个窗口内仍然出现的是全局二值化的缺陷。为了解决这个问题,就出现了局部自适应二值化方法。

局部自适应二值化:在局部二值化的基础之上,将阈值的设定更加合理化。该方法的阈值是通过对该窗口像素的平均值E,像素之间的差平方P,像素之间的均方根值Q等各种局部特征,设定一个参数方程进行阈值的计算,例如:T=aE+bP+c*Q,其中a,b,c是自由参数。这样得出来的二值化图像就更能表现出二值化图像中的细节。

3 反色(inverse)
反色的实际含义是将R、G、B值反转。若颜色的量化级别是256,则新图的R、G、B值为255减去原图的R、G、B值。这里针对的是所有图,包括真彩图、带调色板的彩色图(又称为伪彩色图)、和灰度图。真彩图不带调色板,每个象素用3个字节,表示R、G、B三个分量。所以处理很简单,把反转后的R、G、B值写入新图即可,比如一个点的颜色为(0,0,0),反色后为(255,255,255)。带调色板的彩色图,其位图中的数据只是对应调色板中的一个索引值,我们只需要将调色板中的颜色反转,形成新调色板,而位图数据不用动,就能够实现反转。

⛄二、部分源代码

%读数%20140102
close all
clear
clc

plantype = 2;% 1是读指针,2是读数字
file = ‘C:\Users\lenovo\Desktop\111186778Plan_Recognise\数字指针表盘识别总结\4.tif’;%指针
% file = ‘H:\picture\digital\28-20.tif’;%数字
I0 = imread(file);
figure;imshow(I0);title(‘待读数图片’);
scale = 1000/length(I0);
Irsz = imresize(I0,scale);
clear I0;
%%%%%%2.1:读指针%%%%%%
if plantype == 1
%%%%%%2.1.1:剪切图片,与模板图片相减%%%%%%
load plan1;
Ic = imcrop(Irsz,Rect);
Isub = Istd - Ic ;
level = graythresh(Isub);
Ib = im2bw(Isub,level);
% figure;imshow(Ib);title(‘bwimage’);%----------------------------------

%%%%%%2.1.2:二值化,找指针%%%%%%
topy = find(sum(Ib')>0,1, 'first');
topx = find(Ib(topy,:)>0,1,'first');
% figure(1);hold on;
% plot([O(1),topx],[O(2),topy]);
%%%%%%2.1.3:读数%%%%%%
zz = [topx,topy];
thetazz = -atan( (zz(2)-O(2))/(zz(1)-O(1)) );
if thetazz<0
    thetazz = thetazz + pi;
end
thetakd = -atan( (Kd(2,:)-O(2)) ./ (Kd(1,:)-O(1)) );
nidx = find(thetakd<0);
thetakd(nidx) = thetakd(nidx) + pi;

stepidx = find( thetakd<=thetazz,1,'first');
para1 = Fsv / (length(Kd)-1);
para2 = para1*(stepidx-2);
dushu = para2 + ( thetazz - thetakd(stepidx-1) ) /( thetakd(stepidx)-thetakd(stepidx-1) )*para1;
msgbox(sprintf('%0.3f',dushu),'Result');

%%%%%%2.2:读数字%%%%%%
else if plantype ==2
if length(size(Irsz))==3
Ig=rgb2gray(Irsz);
else
Ig=Irsz;
end
clear Irsz;
If = imfill(Ig);
Ib = im2bw(If,graythresh(If));
clear If;
% figure;imshow(Ib);%-----------------------------------

    SE = strel('square',25);
    Ied = imerode(Ib,SE);
    clear Ib;
    L = bwlabel(Ied);
    stats = regionprops(L,'Area');
    idx = find([stats.Area] == max([stats.Area]));
    [r,c] = find( L==idx );
    clear L;
    r1=min(r);r2=max(r);c1=min(c);c2=max(c);
    rect = [c1,r1,c2-c1,r2-r1];
    Ic = imcrop(Ig,rect);clear Ig;
    % figure;imshow(Ic);%-------------------------------------

    level = graythresh(Ic)/2;   %剪切之后的图片二值化
    Ib=im2bw(Ic,level);clear Ic;
    mp = mean(mean(Ib(1,:))+mean(Ib(end,:))...
         +mean(Ib(:,1))+mean(Ib(:,end)));
    if mp>0.5
        Ib = ~Ib;
    end
    % figure;imshow(Ib);%-------------------

    [m,n] = size(Ib);
    SE = strel('square',round(m/50)); %初步去噪,图片开运算(先腐蚀后膨胀),去除噪声
    Iop = imopen(Ib,SE);
     %  figure;imshow(Iop);%------------------   

    SE = strel('square',round(m/25));    
    Icl = imclose(Iop,SE);clear Iop; %闭运算,希望将组成数字的各LED段连接在一起
     %   figure;imshow(Icl);title('Icl')%-------------------
    Ith = bwmorph(Icl,'thin',inf);%图片细化,将数字变为由细线组成
     %  figure; imshow(Ith);%----------------- 

    sRI = sum(Ith');    %进一步去噪
    upidx = find(sRI>0, 1, 'first' );
    dnidx = find(sRI>0, 1, 'last');
    pse = round((dnidx-upidx)/40);
    SE = strel('square',pse);
    Ioc = imopen(Icl,SE);
    Ith = bwmorph(Ioc,'thin',inf);clear Iop;
    %  figure; imshow(Ith);title('Ith')%-----------------

    %%%%%%%%%%%%%%%%%%%%%%%%%对字符的处理识别%%%%%%%%%%%%%%%%%%%%%%%%
    %%%cut(认为读数是单排的)
    %%横切
    sRI = sum(Ith');   
    upidx = find(sRI>0, 1, 'first' );
    dnidx = find(sRI>0, 1, 'last');
    udidx = upidx:dnidx;
    ud = length(udidx);
    thrlen = ud/2; %判定LED段是否点亮的初步阈值
    Ith = Ith(udidx,:);
    % figure; imshow(Ith);%-----------------
    %%竖切
    sCI=sum(Ith);
    BsCI = (sCI>0); %将x轴投影矩阵scI变为只有0和1的矩阵
    dBsCI = diff(BsCI); %找BscI中为1的元素的范围的第一步,dBscI中的元素只有-1,0,1三种
    idxp = find(dBsCI==1)+1; %记录dBscI中为1的元素的位置,加1是对应BscI中1元素群开始位置
    idxn = find(dBsCI==-1);%记录dBscI中为-1的元素位置,对应BscI中1元素群结束位置,与idxp长度一样
    if length(idxp)~=length(idxn)
        idxn(find(idxn<idxp(1)))=[];
    end
    Cidxchar = [idxp;idxn]; %一个2行多列矩阵,每列对应一个字符,列的第一行为起始位置,第二行为结束位置
    dCidxchar = diff(Cidxchar);
    tdCidx = find(dCidxchar < thrlen/2);
    %%处理切割得到的符号,将“'”型字符归到上一个字符去
    if ~isempty(tdCidx)
        ltdCidx = length(tdCidx);
        delemt0 = [];
        delemt1 = [];
        delemt2 = [];
        for i=1:ltdCidx
            lridx = Cidxchar(1,tdCidx(i)):Cidxchar(2,tdCidx(i));   
            tcharI = Ith(:,lridx)';
            [m,n]=size(tcharI);
            if m>1
                sRtc = sum(tcharI);
            else
                sRtc = tcharI;
            end
            BsRtc = (sRtc>0);
            dBsRtc = diff(BsRtc);
            cupidx = find(dBsRtc==1,1,'first')+1;
            cdnidx = find(dBsRtc==-1, 1, 'last' );
            hc = cdnidx-cupidx;
            if ~isempty(hc)&&hc<thrlen/2&&cdnidx<ud*0.3
                delemt0 = [tdCidx(i),delemt0];
            end
            if ~isempty(hc)&&hc>thrlen/2 && hc<thrlen && cdnidx<ud*2/3
                delemt1 = [tdCidx(i),delemt1];
            end
            if ~isempty(hc)&&hc>thrlen/2 && hc<thrlen && cupidx<ud*2/3
                delemt2 = [tdCidx(i),delemt2];
            end
        end

        if ~isempty(delemt1)
            Cidxchar(2,delemt1-1) = Cidxchar(2,delemt1);
        end
        if ~isempty(delemt2)
            Cidxchar(1,delemt2+1) = Cidxchar(1,delemt2);
        end
        delemt = sort([delemt0,delemt1,delemt2]);
        if ~isempty(delemt) 
            Cidxchar(:,delemt) = [];
        end
   end

    nchar = length(Cidxchar);%读数包含的字符个数(包括小数点)
    %     %%%%显示切割效果%---------------------------------
    %     for i=1:nchar
    %         figure;
    %         imshow(Ith(:,Cidxchar(1,i):Cidxchar(2,i)));
    %     end

    %%%确定各LED段点亮与否    
    ntab = [ 
             1 1 1 1 1 1 0  %0
             0 1 1 0 0 0 0  %1
             1 1 0 1 1 0 1  %2
             1 1 1 1 0 0 1  %3
             0 1 1 0 0 1 1  %4
             1 0 1 1 0 1 1  %5
             1 0 1 1 1 1 1  %6
             1 1 1 0 0 0 0  %7
             1 1 1 1 1 1 1  %8
             1 1 1 1 0 1 1  %9
             0 0 0 0 0 0 0  %.
             0 0 0 0 0 0 1  %-
            ];
    result = [];  
    for i=1:nchar
        lridx = Cidxchar(1,i):Cidxchar(2,i); 
         if length(lridx) < thrlen/2
            charI = [zeros(ud,int16(thrlen)-length(lridx)),Ith(:,lridx)];
         else
            charI = Ith(:,lridx);
         end
         [m,n] = size(charI);
    %               figure;imshow(charI)%-------------------
        %%%%%agd段LED,由于字符可能有倾斜,取四分之一为判断标准
        xthrlen = thrlen/4;
        ayidx = 1:int16(m/8);      %a段y轴方向长度取为总长的八分之一
        asCchar = sum( charI( ayidx , :) ); %a段LED的x轴投影
        BasCchar = asCchar(find(asCchar<2));
        sBa = sum(BasCchar);
        fa = (sBa > xthrlen); %a段LED是否点亮 
        gyidx = int16(7*m/16):int16(9*m/16);
        gsCchar = sum(charI(gyidx,:));%g段LED的x轴投影
        BgsCchar = gsCchar(find(gsCchar<2));
        sBg = sum(BgsCchar);
        fg = (sBg > xthrlen); %g段LED是否点亮
        dyidx = int16(7*m/8):m;
        dsCchar = sum(charI(dyidx,:));    %d段LED的x轴投影
        BdsCchar = dsCchar(find(dsCchar<2));
        sBd = sum(BdsCchar);
        fd = (sBd > xthrlen); %d段LED是否点亮
        %%%%%fedc段LED,投影到y轴一般不倾斜,取二分之一为判断标准
        ythrlen = thrlen/2;
        fyidx = 1:int16(m/2); fxidx = 1:int16(n/2);
        fsRchar = sum(charI(fyidx,fxidx)');%f段LED的y轴投影
        BfsRchar = (fsRchar>0);
        sBf = sum(BfsRchar);
        ff = (sBf>ythrlen);               %f段LED是否点亮
        eyidx = int16(m/2):m; exidx = 1:int16(n/2);
        esRchar = sum(charI(eyidx,exidx)');%e段LED的y轴投影
        BesRchar = (esRchar>0);
        sBe = sum(BesRchar);
        fe = (sBe>ythrlen);               %e段LED是否点亮
        cyidx = int16(m/2):m; cxidx = int16(n/2):n;
        csRchar = sum(charI(cyidx,cxidx)');%c段LED的y轴投影
        BcsRchar = (csRchar>0);
        sBc = sum(BcsRchar);
        fc = (sBc>ythrlen);               %c段LED是否点亮
        byidx = 1:int16(m/2); bxidx = int16(n/2):n;
        bsRchar = sum(charI(byidx,bxidx)');%b段LED的y轴投影
        BbsRchar = (bsRchar>0);
        sBb = sum(BbsRchar);
        fb = (sBb>ythrlen);               %b段LED是否点亮

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]曲超然,陈立伟,王建生,王水根.基于深度学习的工业数字仪表识别算法研究[J].应用科技. 2022,49(02)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值