项目简介
利用 OpenCV 和笔记本 PC 的摄像头(或者外接摄像头)识别万用表电流值。
步骤:
1、定位屏幕
照片要光线均匀,无大面积阴影。
另外,这款万用表轮廓不明显,故贴纸使轮廓更分明。
首先对图像做:灰度化、高斯滤波、边缘识别。
在处理后的图片上识别轮廓,并提取最大轮廓,即为屏幕区域。
得到:
2、提取屏幕,并做一系列图像处理,得到黑白屏幕
透视变换,提取屏幕区域:
图片二值化、形态学变换(腐蚀、膨胀):
3、提取数字,并分割
提取图片数字区域,消除边缘阴影,然后使用垂直投影法分割数字。
4、识别数字
进一步提取单个数字中每一根数码管的大致区域,通过统计该区域白色像素占比,若占比超过40%(有误差),则认为该管为亮。然后查表,判断数字。
结果:
代码附上:
# import the necessary packages
from imutils.perspective import four_point_transform
from imutils import contours
import imutils
import cv2
import numpy as np
from openpyxl import Workbook
from openpyxl import load_workbook
from openpyxl.writer.excel import ExcelWriter
# define the dictionary of digit segments so we can identify
# each digit on the thermostat
DIGITS_LOOKUP = {
(1, 1, 1, 0, 1, 1, 1): 0,
(0, 0, 1, 0, 0, 1, 0): 1,
(1, 0, 1, 1, 1, 0, 1): 2,
(1, 0, 1, 1, 0, 1, 1): 3,
(0, 1, 1, 1, 0, 1, 0): 4,
(1, 1, 0, 1, 0, 1, 1): 5,
(1, 1, 0, 1, 1, 1, 1): 6,
(1, 1, 1, 0, 0, 1, 0): 7,
(1, 1, 1, 1, 1, 1, 1): 8,
(1, 1, 1, 1, 0, 1, 1): 9
}
def get_vvList(list_data):
#取出list中像素存在的区间
vv_list=list()
v_list=list()
for index,i in enumerate(list_data):
if i>0:
v_list.append(index)
else:
if v_list:
vv_list.append(v_list)
#list的clear与[]有区别
v_list=[]
return vv_list
# load the example image
image = cv2.imread("15.jpg")
# pre-process the image by resizing it, converting it to
# graycale, blurring it, and computing an edge map
image = imutils.resize(image, height=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 128, 200)
# find contours in the edge map, then sort them by their
# size in descending order
cnts,hi = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# the largest contour(default: target) is in the first place after sorting
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
cv2.drawContours(image,cnts,0,(0,0,255),3)
displayCnt = None
# loop over the contours
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# if the contour has four vertices, then we have found
# the thermostat display
if len(approx) == 4:
displayCnt = approx
break
# extract the thermostat display, apply a perspective transform to it
warped = four_point_transform(gray, displayCnt.reshape(4, 2))
output = four_point_transform(image, displayCnt.reshape(4, 2))
#
thresh = cv2.threshold(warped, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# kernel = np.ones((5,5),np.uint8)
# erosion = cv2.erode(thresh,kernel)
# dst = cv2.dilate(erosion,kernel)
# dst1 = cv2.dilate(dst,kernel)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (1, 5))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,2)
ROI = thresh.copy()[20:103, 20:168]
# 黑白反转
where_0 = np.where(ROI == 0)
where_255 = np.where(ROI == 255)
ROI[where_0] = 255
ROI[where_255] = 0
print(thresh.shape)
rows, cols = ROI.shape
ver_list = [0]*cols
for j in range(cols):
for i in range(rows):
if ROI.item(i,j)==0:
ver_list[j]=ver_list[j]+1
'''
对ver_list中的元素进行筛选,可以去除一些噪点qq
'''
ver_arr=np.array(ver_list)
ver_arr[np.where(ver_arr<1)]=0
ver_list=ver_arr.tolist()
#绘制垂直投影
img_white=np.ones(shape=(rows,cols),dtype=np.uint8)*255
for j in range(cols):
pt1=(j,rows-1)
pt2=(j,rows-1-ver_list[j])
cv2.line(img_white,pt1,pt2,(0,),1)
cv2.imshow('垂直投影',img_white)
digits = []
#切割单一字符
vv_list=get_vvList(ver_list)
for i in vv_list:
img_ver=ROI.copy()[:,i[0]:i[-1]]
where_0 = np.where(img_ver == 0)
where_255 = np.where(img_ver == 255)
img_ver[where_0] = 255
img_ver[where_255] = 0
(roiH, roiW) = img_ver.shape
(dW, dH) = (int(roiW * 0.3), int(roiH * 0.1))
dHC = int(roiH * 0.05)
# define the set of 7 segments
segments = [
((0, 0), (roiW, dH)), # top
((0, 0), (dW, roiH // 2)), # top-left
((roiW - dW, 0), (roiW, roiH // 2)), # top-right
((0, (roiH // 2) - dHC), (roiW, (roiH // 2) + dHC)), # center
((0, roiH // 2), (dW, roiH)), # bottom-left
((roiW - dW, roiH // 2), (roiW, roiH)), # bottom-right
((0, roiH - dH), (roiW, roiH)) # bottom
]
on = [0] * len(segments)
# loop over the segments
for (i, ((xA, yA), (xB, yB))) in enumerate(segments):
# extract the segment ROI, count the total number of
# thresholded pixels in the segment, and then compute
# the area of the segment
segROI = img_ver[yA:yB, xA:xB]
total = cv2.countNonZero(segROI)
area = (xB - xA) * (yB - yA)
# if the total number of non-zero pixels is greater than
# 50% of the area, mark the segment as "on"
proportion = total / float(area)
print(proportion)
if proportion > 0.35:
on[i] = 1
# lookup the digit and draw it on the image
# special: digit = 1
if roiH > 5 * roiW:
digit = 1
else:
digit = DIGITS_LOOKUP[tuple(on)]
print(digit)
digits.append(digit)
cv2.imshow('单一字符', img_ver)
cv2.waitKey(0)
cv2.putText(warped, str(digits), (15, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 0), 2)
print(digits)
cv2.imshow("Output1", image)
cv2.imshow("Output2", warped)
cv2.imshow("Output3", thresh)
cv2.waitKey(0)
还有一份带简单UI界面,摄像头实时识别版,且有绘图功能,如需要联系我: