💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)
⛄一、简介
0 引言
边缘提取是模式识别中物体特征抽取的重要环节之一, 基于梯度的传统边缘检测方法对图像的边缘检测研究已经取得了一些成果, 但目前在实际检测中得到的边缘结果并不令人满意;并且随着计算机速度和存储的飞速发展, 图像量化像素点宽度将越来越小, 即使在边缘处, 相邻像素灰度值的差异将越来越小, 从而制约了建立在以梯度为原则的边缘检测算子的发展, 并且由于通常要作分析及处理的原始图像往往含有噪声, 而边缘和噪声在空间域表现为灰度有比较大的起落, 在频率域则反映为同是高频分量;同时, 为了避免给图像带来新的误差或掩盖真实信息, 不能对其作滤波、增强等处理。因此, 寻找新的边缘检测方法是必要的。
1 基于神经网络的边缘检测算法
大家知道, 如果一个过程的描述和理解都十分清楚, 该过程的处理能用最佳方法设计, 那就不必要考虑用神经网络去做;要做, 其结果未必更好。然而, 神经网络却适合于难于模型化的问题。神经网络是从样本中学习, 从而从网络本身形成所求解问题的模型。对于数字图像的边缘检测来说, 图像中局部变化与场景的对应关系可以通过样本集对网络的训练来求解。神经网络能够很好地完成N维空间 (输入结点个数N) 到M维空间 (输出结点个数M) 的复杂的非线性映射。故它具备进行图像边缘检测的能力, 所以我们可以用神经网络进行数字图像的边缘检测。
1.1 训练集的选取
在BP神经网络的学习训练过程中, 训练集样本的选取是一件非常重要的事情。训练集的选取
图1 训练图
将直接影响网络学习训练的时间、权值矩阵与学习训练效果等。目前, 国内外有很多的学者采用神经网络的方法进行数字图像边缘检测的研究, 但是尚处在试验阶段, 尤其对样本的选择问题还没有很好的解决方法。我认为:在样本的选择过程中, 要选择有代表性的图像作为训练图像。图1这副图像边缘比较明显, 且边缘分布在图像的大部分区域。我把这副原始的图像作为训练即集的初始样本。
图1是一副256×256的8位的灰度BMP图像。这副图像边缘比较清晰, 颗粒边缘分布在整副图像中, 而且其纹理特征比较丰富, 使神经网络得到很好训练, 网络权值等网络信息会记住更多的边缘信息, 可以比较好的检测图像。
把这副图像分别经过Roberts算子、Sobel算子、Prewitt算子三个传统算子的边缘检测, 得到三副边缘检测的边缘图像, 用三副检测出来边缘图像经过比例加权, 得到学习训练图像;亦即, 对于图像的每一个像素, 把三副图像相同像素的灰度按照预定的比例进行计算, 得到的新像素的灰度值, 当所有的像素计算完之后, 就会得到一副新的图像, 然后把这个新得到图像的灰度值输入到BP神经网络模型进行学习训练。
1.2 BP神经网络结构的确定
在确定神经网络的结构时, 除了输入层和输出层之外, 关键就是要确定有几个中间层。由于所采用的神经网络模型是BP神经网络且结点函数是S型函数, 在实际中只采用了一个中间层。最后, 证明了一个中间层能较好的完成数字图像的边缘检测。
对于输入层结点, 输入层结点数应等于输入向量的分量数目。在图像情况下, 像素的数目基本决定了输入结点的数目。本文选用的是7×7的模板, 有49个向量分量, 即输入层结点的数目是49。所选的模板不能太大也不能太小, 如果所选的邻域模板太大的化, 那么网络的规模就比较大, 网络的计算量比较大, 增加网络的训练以及检测时间, 同时边缘的信息也可能会丢失;同时也不能太小, 如果模板太小, 就不能很充分地对某个像素的周围邻域很好的学习。对于中间层的结点, 其结点数目的选择非常重要。中间层数目较少, 网络将不能建立复杂的判决界, 将会降低网络的分类能力, 网络可能训练不出来;一旦数目太多, 那么判决界只包封了训练点而失去了概括推断的能力, 而且计算量很大, 并增加网络的负荷, 使训练时间加长, 降低系统效率, 训练效果不好。
开始的时候, 我把中间层结点的个数定为6, 但是发现在训练的过程中, 网络训练的速度非常慢。为了提高训练的速度, 改变了结点的数目, 根据经验公式, 增加了中间层结点的数目。目前中间层单元的数目取值没有一定的规则, 要根据具体的问题和训练情况来决定。根据专家和学者的经验得知], 其中间层单元的数目为n
式中 m为输出单元个数;n为输入单元数, α为1到10之间的常数;其中n=49;m=1;于是α=8。在实验过程中, 训练出来的神经网络进行边缘检测效果不是很理想, 认为网络缺少分化数据的能力, 此时中间层单元的数目比较少;所以又增加了中间层单元的数目, 即n1=10, 当中间层单元的数目为10时, 效果较好。这个时候我没有在增加中间层单元的数目, 因为在增加中间层数目将会使运算量有很大的增加, 增加训练的时间和检测的时间。
综合以上考虑, 确定了如下网络拓扑结构:
49 (输入结点单元个数) ——10 (中间层结点单元个数) ——1 (输出结点单元个数)
1.3 BP神经网络的学习训练
学习训练是任何一个神经网络模型在应用过程中比较关键的环节。所以, 在学习训练过程中, 一些参数的确定对神经网络的学习训练至关重要。网络初始参数的设置, 包括网络初始结构、连接的权值、阈值、学习率等参数的不同选取, 都会对网络的收敛速度产生影响, 而初始参数的选择, 除了可以进行一些技术处理之外, 主要还要依赖于神经网络建模者的观察与经验。
1.3.1 初始值的确定
对于网络的初始权值、阈值, 通常的做法是从[-1, 1]或[0, 1]区间上随即选取一组数作为初始权值进行训练, 不同的改进算法对区间的选取会有不同。
1.3.2 向量的归一化处理
在学习训练过程中, 不能使结点输入太大, 否则的话, 权值的调节过小使网络不能很好的学习训练。由于特征向量维数较大, 且大部分的值都是基于灰度的都大于1, 为了加快训练速度, 对特征向量进行了归一化处理。
如果把特征向量看成行向量, 可表示为X= (x0, x1, Λ, x48)在8位的图像中, 最大的灰度值是255, 所以实际处理过程中, 归一化结果为
由于归一化的原因, 输出层计算出的结果也是在[0, 1]之间的, 显然, 这个不是作为输出图像的像素的灰度值。在计算出输出层的结果后, 再乘以255, 就是输出图像像素的实际灰度值。
1.3.3 网络误差的确定
对于BP反向传播训练算法, 通常使用网络误差是是我们熟知的均方差。均方差定义如下
由于其输出节点数为一个, 那么一个单元的绝对误差的平方作为神经网络的误差函数。
1.3.4 神经网络的训练
整个的学习训练过程见图2所示。从这个图中就可以看出网络的学习训练是如何进行的, 可以看出其权值、阈值的改变是在误差反馈的过程中, 根据反馈的情况发生改变的。由于处理的对象是图像, 每输入一个样本即以每个像素周围的模板像素进行神经元网络训练一次, 也就是把以某一个像素为中心的周围的49个像素的灰度值以从下向上、从左向右的顺序依次把各个像素的灰度送入输入层, 进行神经网络的学习训练。在输出层, 根据“导师”提供的期望输出像素的灰度值和输出层的实际输出像素灰度值计算出网络的误差, 误差沿反向传播进一步改变每个神经元的阈值和神经元之间的连接权值, 使网络能够记住更多的边缘信息。根据训练的要求, 可以停止网络的训练, 训练出来的权值、阈值全部保留在后端的数据库中, 以便在利用神经网络进行检测时, 从后端的数据库提取出权值、阈值进行检测。在训练的过程中, 其输出层的输出像素灰度值为输入模板中心像素经神经网络计算出的像素灰度值。那么在网络训练的过程中, 由于每次训练的图像是按照Roberts、Sobel和Prewitt经典算子得出得传统边缘检测图像的不同比例作为目标图像, 那么每次在训练的时候, 要对网络重新进行训练。
图2 训练过程
⛄二、部分源代码
function varargout = fuzzyedge(varargin)
% FUZZYEDGE MATLAB code for fuzzyedge.fig
% FUZZYEDGE, by itself, creates a new FUZZYEDGE or raises the existing
% singleton*.
%
% H = FUZZYEDGE returns the handle to a new FUZZYEDGE or the handle to
% the existing singleton*.
%
% FUZZYEDGE(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in FUZZYEDGE.M with the given input arguments.
%
% FUZZYEDGE(‘Property’,‘Value’,…) creates a new FUZZYEDGE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before fuzzyedge_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to fuzzyedge_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help fuzzyedge
% Last Modified by GUIDE v2.5 16-Jul-2011 14:54:47
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @fuzzyedge_OpeningFcn, …
‘gui_OutputFcn’, @fuzzyedge_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before fuzzyedge is made visible.
function fuzzyedge_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to fuzzyedge (see VARARGIN)
% Choose default command line output for fuzzyedge
handles.output = hObject;
a = ones(256,256);
axes(handles.axes1);
imshow(a);
axes(handles.axes2);
imshow(a);
axes(handles.axes3);
imshow(a);
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes fuzzyedge wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = fuzzyedge_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on button press in clear.
function clear_Callback(hObject, eventdata, handles)
% hObject handle to clear (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
a = ones(256,256);
axes(handles.axes1);
imshow(a);
axes(handles.axes2);
imshow(a);
axes(handles.axes3);
imshow(a);
% — Executes on button press in browse.
function browse_Callback(hObject, eventdata, handles)
% hObject handle to browse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[file path] = uigetfile(‘.bmp;.jpg;*.png’,‘选择一幅图片’);
if file==0
warndlg(‘用户必须选择一个输入的图片’);
else
a = imread(fullfile(path,file));
axes(handles.axes1);
imshow(a);
handles.a = a;
end
% Update handles structure
guidata(hObject, handles);
% — Executes on button press in direction.
function direction_Callback(hObject, eventdata, handles)
% hObject handle to direction (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
a = handles.a;
I = double(a);
[R C P] = size(a);
%%%%%%%%%%%%% Direction Find Calculation…
for i = 2:R-1
for j = 2:C-1
D1(i-1,j-1) = abs(I(i-1,j-1) - I(i,j)) + abs(I(i+1,j+1) - I(i,j));
D2(i-1,j-1) = abs(I(i-1,j) - I(i,j)) + abs(I(i+1,j) - I(i,j));
D3(i-1,j-1) = abs(I(i-1,j+1) - I(i,j)) + abs(I(i+1,j-1) - I(i,j));
D4(i-1,j-1) = abs(I(i,j-1) - I(i,j)) + abs(I(i,j+1) - I(i,j));
end
end
handles.D1 = D1;
handles.D2 = D2;
handles.D3 = D3;
handles.D4 = D4;
handles.I = I;
% Update handles structure
guidata(hObject, handles);
warndlg(‘方向检测完成’);
% — Executes on button press in edgeclassfy.
function edgeclassfy_Callback(hObject, eventdata, handles)
% hObject handle to edgeclassfy (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
D1 = handles.D1;
D2 = handles.D2;
D3 = handles.D3;
D4 = handles.D4;
I = handles.I;
[R C P] = size(D1);
for i = 1:R
for j = 1:C
if ((D1(i,j)<=35) && (D2(i,j)<=35) && (D3(i,j)<=35) && (D4(i,j)<=35))
New_im(i,j) = 0; % BACKGROUND CLASS
elseif ((D1(i,j)<=35) && (D2(i,j)>35) && (D3(i,j)>35) && (D4(i,j)>35))
New_im(i,j) = 1;
elseif ((D1(i,j)>35) && (D2(i,j)<=35) && (D3(i,j)>35) && (D4(i,j)>35))
New_im(i,j) = 2;
elseif ((D1(i,j)>35) && (D2(i,j)>35) && (D3(i,j)<=35) && (D4(i,j)>35))
New_im(i,j) = 3;
elseif ((D1(i,j)>35) && (D2(i,j)>35) && (D3(i,j)>35) && (D4(i,j)<=35))
New_im(i,j) = 4;
elseif ((D1(i,j)>35) && (D2(i,j)>35) && (D3(i,j)>35) && (D4(i,j)>35))
New_im(i,j) = 5; % SPECKLE CLASS
end
end
end
handles.New_im = New_im;
% Update handles structure
guidata(hObject, handles);
warndlg(‘完成’);
% — Executes on button press in competitiverule.
function competitiverule_Callback(hObject, eventdata, handles)
% hObject handle to competitiverule (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
New_im = handles.New_im;
D1 = handles.D1;
D2 = handles.D2;
D3 = handles.D3;
D4 = handles.D4;
[r c] = size(New_im);
%%%%%%%%%%%% Finding Stronger Edges…
for i = 2:r-1
for j = 2:c-1
switch New_im(i,j)
case 0 %%%%%%%%%%%%%% Change to Black
New_edge(i-1,j-1) = 0;
case 1 %%%%%%%%%%%%% Checking the Status
if (D3(i,j)>=D3(i+1,j-1))&&(D3(i,j)>=D3(i-1,j+1)) %%%%%%%% change to White
New_edge(i-1,j-1) = 1;
else
New_edge(i-1,j-1) = 0;
end
case 2
if (D4(i,j)>=D4(i+1,j-1))&&(D4(i,j)>=D4(i-1,j+1)) %%%%%%%% change to White
New_edge(i-1,j-1) = 1;
else
New_edge(i-1,j-1) = 0;
end
case 3
if (D1(i,j)>=D1(i+1,j-1))&&(D1(i,j)>=D1(i-1,j+1)) %%%%%%%% change to White
New_edge(i-1,j-1) = 1;
else
New_edge(i-1,j-1) = 0;
end
case 4
if (D2(i,j)>=D2(i+1,j-1))&&(D2(i,j)>=D2(i-1,j+1)) %%%%%%%% change to White
New_edge(i-1,j-1) = 1;
else
New_edge(i-1,j-1) = 0;
end
case 5
New_edge(i-1,j-1) = 1;
end
end
end
axes(handles.axes3);
imshow(New_edge);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]肖锋.基于BP神经网络的数字图像边缘检测算法的研究[J].西安科技大学学报. 2005,(03)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合