💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab信号处理(仿真科研站版)仿真内容点击👇
Matlab信号处理(仿真科研站版)
⛄一、 三容水箱故障诊断
1 三容水箱
三容水箱是一种常见的水箱类型,它由三个独立的容器组成,每个容器都有不同的功能和用途。以下是对三容水箱的介绍:
(1)储水容器:这是三容水箱中最大的容器,用于储存大量的水。它通常位于水箱的底部,可以储存供日常生活和用水需求使用的水量。储水容器可以根据需要进行定期或自动补充水源,以确保水箱始终有足够的水供应。
(2)滤水容器:这是三容水箱中的第二个容器,用于过滤和净化储存的水。滤水容器通常包含滤芯或其他过滤介质,可以去除水中的杂质、颗粒物和异味,提供清洁、健康的饮用水。滤水容器可以根据需要进行定期更换或清洗,以保持过滤效果。
(3)加压容器:这是三容水箱中的第三个容器,用于增加供水系统的压力。加压容器通常配备了压力开关和泵浦,当供水系统需要增加压力时,泵浦会自动启动并将储存的水推送到管道中。加压容器可以确保供水系统在高楼、远距离或其他需要增加压力的情况下正常运行。
2 三容水箱故障诊断原理
三容水箱是一种常见的供水设备,它由三个容器组成:上水箱、中水箱和下水箱。故障诊断原理是通过监测水箱的水位变化来判断是否存在故障。以下是三容水箱故障诊断的原理:
(1)水位传感器:每个水箱都配备了水位传感器,用于检测水位的高低。传感器通常采用浮球或电极的形式,当水位达到一定高度时,传感器会发出信号。
(2)控制系统:水箱的控制系统会接收水位传感器发出的信号,并进行处理。控制系统可以是一个简单的电路板或者是一个智能控制器,它能够根据接收到的信号做出相应的判断和操作。
(3)故障判断:通过监测水位传感器的信号,控制系统可以判断出以下几种故障情况:
上水箱无水:当上水箱的水位传感器没有检测到水位信号时,控制系统会判断上水箱无水,可能是供水管道出现问题或者供水中断。
中水箱溢满:当中水箱的水位传感器检测到水位过高时,控制系统会判断中水箱溢满,可能是进水阀门未关闭或者控制系统故障。
下水箱无水:当下水箱的水位传感器没有检测到水位信号时,控制系统会判断下水箱无水,可能是排水管道堵塞或者排水阀门未打开。
通过以上的故障判断,可以及时发现并解决三容水箱的故障,确保供水系统的正常运行。
⛄二、部分源代码
clear;
clc;
%%%%%%%%四种故障%%%%%
t=1:1:3000 ; %设定时间基准
for i=1:size(t) %设定时间基准
if i>=10;
pianyi(i)=1;
else pianyi(i)=0;
end
if i>=10&i<=20;
pianyi2(i)=1;
else pianyi2(i)=0;
end
if i>20;
pianyi3(i)=1;
else pianyi3(i)=0;
end
if i<=10;
pianyi4(i)=1;
else pianyi4(i)=0;
end
end %设定误差出现基准
wave=0.01*randn(size(t)); % matlab函数randn:产生正态分布的随机数或矩阵的函数
rootwave=7+wave;
PCHA=0.5pianyi; %设定误差类型 偏差故障
PYI=0.0125pianyi.(t-10); %设定误差类型 漂移故障
JDU=2pianyi.normrnd(0,0.05,size(t)) ; %设定误差类型 精度下降故障
WQUAN=0.5pianyi3+0.05pianyi2.(t-10)+pianyi4.*wave; %设定误差类型 完全故障
xmin=0 ;
xmax=50;
ymin=6.5;
ymax=8;
%%%%%%%%%%%PID调节三水箱%%%%
kp1=30;ki1=0.2;kd1=5;
kp2=25;ki2=0.2;kd2=5;
h1set=25;h2set=20;
c1=0.450289;c2=0.611429;c3=0.461526;
noise1=rand(1)*0.01;noise2=rand(1)*0.01;noise3=rand(1)*0.01;
%s = rand(‘state’)
%rand函数产生由在(0, 1)之间均匀分布的随机数组成的数组。
%Y = rand(n) 返回一个n x n的随机矩阵。如果n不是数量,则返回错误信息。
%Y = rand(m,n) 或 Y = rand([m n]) 返回一个m x n的随机矩阵。
%Y = rand(m,n,p,…) 或 Y = rand([m n p…]) 产生随机数组。
%Y = rand(size(A)) 返回一个和A有相同尺寸的随机矩阵。
g=981;
Sp=0.5;
%h10=0;h20=0;h30=0;
u1=0;u2=0;
A=154;
h1=0;h2=0;h3=0;
Q23min=-80.5;Q23max=80.5;
Q13min=-60;Q13max=60;
Q20min=0;Q20max=60;
h1min=0;h1max=100;
h2min=0;h2max=100;
h3min=0;h3max=100;
u2min=0;u2max=100;
u1min=0;u1max=100;
error1=0;error2=0;
for k=1:3000
Q13(k)=0.5c1Spsign(h1(k)-h3(k))sqrt(2gabs(h1(k)-h3(k)));
Q23(k)=0.5c3Spsign(h3(k)-h2(k))sqrt(2gabs(h3(k)-h2(k)));
Q20(k)=0.5c2Spsqrt(2g*h2(k));
if mod(k,10)==0 %取余数
error1(k)=h1set-h1(k);%确立偏差
else
if k==1
error1(k)=error1;
else
error1(k)=error1(k-1);
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]彭昭,文辉,臧曙,周东华.一类混杂系统缓变故障的半定性诊断方法[J].中国科技论文在线.2010年6月.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置