【轴承故障诊断】贝叶斯优化支持向量机轴承故障诊断(西储数据)【含Matlab源码 2027期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作扫描文章底部二维码。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab信号处理(仿真科研站版)仿真内容点击👇
Matlab信号处理(仿真科研站版)

⛄一、贝叶斯优化支持向量机简介

1 支持向量机
SVM的基本思想是结构风险最小化, 通过核函数将数据从原始特征空间映射到高维特征空间, 使线性内积运算非线性化, 然后在高维特征空间建立使分类间隔最大化的最优超平面。 惩罚因子C和RBF核函数参数γ是SVM中两个重要的参数。 惩罚因子C>0, C越大对错误分类的惩罚越大, 但容易出现过拟合; C越小则对错误分类的惩罚减小, 模型的复杂度降低, 容易出现欠拟合。 γ决定数据映射到新特征空间后的分布, γ越小, 支持向量越多, 模型平滑效应增大, 容易欠拟合; γ越大, 支持向量越少, 对未知样本分类效果很差, 模型容易过拟合。 支持向量的个数影响模型训练与预测的速度, 因此在使用SVM建立判别模型时, 惩罚参数C和核函数参数γ的选择至关重要。

2 贝叶斯优化
SVM模型参数C和γ与模型性能之间呈现黑箱特点, 即模型的性能与参数C和γ之间无法使用表达式描述, 只能根据通过遍历离散的自变量取值得到最优SVM模型。 贝叶斯优化是一种十分高效的全局优化算法, 主要用于机器学习调参, 贝叶斯优化是一种不需要计算导数的系统化调优算法, 采用高斯过程建立概率代理模型, 考虑之前的参数信息, 不断更新先验, 使用采集函数来确定下一个评估点, 可以在较短的时间内确定最佳参数。 概率代理模型和采集函数是贝叶斯优化算法的两个核心组件。 高斯过程是随机变量的集合, 用以代替目标优化函数。 在本研究中, 高斯过程用于优化的SVM的参数组合, 高斯过程的表达式如式(1)
在这里插入图片描述
常见的超参数优化算法包括网格搜索、 遗传算法, 这些算法除了非常耗时之外, 在遍历下一个离散参数时不考虑之前的参数信息, 针对非凸问题容易陷入局部最优。 而贝叶斯优化侧重于减少评估代价, 迭代次数少, 速度快, 而且考虑之前的参数信息, 针对非凸问题不易陷入局部最优。 本研究选择贝叶斯优化作为SVM模型的参数寻优算法。

贝叶斯优化算法的过程如下:

(1) 在SVM模型的C和γ的设定搜索范围中随机选取n0个采样点, 以十折交叉验证的平均测试准确率为目标函数f, 模型的不同参数组合作为自变量x, 构成代理模型框架, 得到目标函数的初始分布和采样点集D;

(2) 通过最大化采集函数选择下一个采样点xt, 得到采样点函数值f(xt);

(3) 将新的采样点[xt, f(xt)]添加到采样点集D中, 更新高斯过程代理模型, 使得代理模型更加贴合目标函数的分布;

(4) 设定一个最大迭代次数, 当迭代次数达到最大次数时, 停止算法迭代, 输出最优采样点以及对应的目标函数最优值, 即SVM模型的最优参数C和γ。

⛄二、部分源代码

function [BestCVaccuracy,Bestc,Bestg,ga_option] = gaSVMcgForClass(train_label,train_data,ga_option)
%% 参数初始化
if nargin == 2
ga_option = struct(‘maxgen’,100,‘sizepop’,20,‘ggap’,0.9,…
‘cbound’,[1e-3 1e3],‘gbound’,[2^-5 2^5],‘v’,5);
end
% maxgen:最大的进化代数,默认为200,一般取值范围为[100,500]
% sizepop:种群最大数量,默认为20,一般取值范围为[20,100]
% cbound = [cmin,cmax],参数c的变化范围,默认为(0,100]
% gbound = [gmin,gmax],参数g的变化范围,默认为[0,1000]
% v:SVM Cross Validation参数,默认为5

%%
MAXGEN = ga_option.maxgen;
NIND = ga_option.sizepop;
NVAR = 2;
PRECI = 20;
GGAP = ga_option.ggap;
trace = zeros(MAXGEN,2);

FieldID = …
[rep([PRECI],[1,NVAR]);[ga_option.cbound(1),ga_option.gbound(1);ga_option.cbound(2),ga_option.gbound(2)]; …
[1,1;0,0;0,1;1,1]];

Chrom = crtbp(NIND,NVAR*PRECI);

gen = 1;
v = ga_option.v;
BestCVaccuracy = 0;
Bestc = 0;
Bestg = 0;
%%
cg = bs2rv(Chrom,FieldID);

for nind = 1:NIND
cmd = ['-v ‘,num2str(v),’ -c ‘,num2str(cg(nind,1)),’ -g ',num2str(cg(nind,2))];
ObjV(nind,1) = libsvmtrain(train_label,train_data,cmd);
end
[BestCVaccuracy,I] = max(ObjV);
Bestc = cg(I,1);
Bestg = cg(I,2);

%%
while 1

FitnV = ranking(-ObjV); 
SelCh = select('sus',Chrom,FitnV,GGAP);
SelCh = recombin('xovsp',SelCh,0.7);
SelCh = mut(SelCh);
cg = bs2rv(SelCh,FieldID);
for nind = 1:size(SelCh,1)
    cmd = ['-v ',num2str(v),' -c ',num2str(cg(nind,1)),' -g ',num2str(cg(nind,2))];
    ObjVSel(nind,1) = libsvmtrain(train_label,train_data,cmd);
end
[Chrom,ObjV] = reins(Chrom,SelCh,1,1,ObjV,ObjVSel); 
if max(ObjV) <= 50
    continue;
end
[NewBestCVaccuracy,I] = max(ObjV);
cg_temp = bs2rv(Chrom,FieldID);
temp_NewBestCVaccuracy = NewBestCVaccuracy;
if NewBestCVaccuracy > BestCVaccuracy
    BestCVaccuracy = NewBestCVaccuracy;
    Bestc = cg_temp(I,1);
    Bestg = cg_temp(I,2);
end
if abs( NewBestCVaccuracy-BestCVaccuracy ) <= 10^(-2) && ...
        cg_temp(I,1) < Bestc
    BestCVaccuracy = NewBestCVaccuracy;
    Bestc = cg_temp(I,1);
    Bestg = cg_temp(I,2);
end
trace(gen,1) = max(ObjV);
trace(gen,2) = sum(ObjV)/length(ObjV); 
gen = gen+1; 
if gen <= MAXGEN/2
    continue;
end
if BestCVaccuracy >=80 && ...
        ( temp_NewBestCVaccuracy-BestCVaccuracy ) <= 10^(-2)
    break;
end
if gen == MAXGEN
    break;
end 

end
gen = gen -1;
%%
figure;
hold on;
trace = round(trace10000)/10000;
plot(trace(1:gen,1),'r
-',‘LineWidth’,1.5);
plot(trace(1:gen,2),‘o-’,‘LineWidth’,1.5);
legend(‘最佳适应度’,‘平均适应度’);
xlabel(‘进化代数’,‘FontSize’,12);
ylabel(‘适应度’,‘FontSize’,12);
axis([0 gen 0 100]);
grid on;
axis auto;

line1 = ‘适应度曲线Accuracy[GAmethod]’;
line2 = [‘(终止代数=’, …
num2str(gen),‘,种群数量pop=’, …
num2str(NIND),‘)’];
line3 = [‘Best c=’,num2str(Bestc),’ g=‘,num2str(Bestg), …
’ CVAccuracy=’,num2str(BestCVaccuracy),‘%’];
title({line1;line2;line3},‘FontSize’,12);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]冯瑞杰,陈争光,衣淑娟.基于贝叶斯优化的SVM玉米品种鉴别研究[J].光谱学与光谱分析. 2022,42(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

基于 MATLAB贝叶斯优化支持向量机轴承故障诊断代码主要包以下几个步骤: 1. 数据预处理:首先,我们需要通过传感器或其他设备获取轴承运行时的振动数据。然后,对这些数据进行预处理,包括数据滤波、去噪和特征提取等操作。这样可以将原始数据转换为特征向量,以供后续步骤使用。 2. 特征选择:在贝叶斯优化支持向量机中,选择适当的特征是非常重要的。可以利用相关性分析、信息增益等方法,从特征向量中选择最相关的特征。这样可以提高模型的分类准确度和鲁棒性。 3. 参数优化:利用贝叶斯优化算法,如贝叶斯优化全局搜索(Bayesian Optimization with Global Search, BOGS)算法,对支持向量机模型的参数进行优化。这些参数包括核函数的选择、惩罚系数等。优化后的参数能够有效地提高支持向量机模型的分类性能。 4. 模型训练与评估:使用优化后的参数,通过支持向量机算法对轴承数据进行训练。训练完毕后,需要对模型进行评估,计算分类准确度、召回率等指标。这些指标能够帮助判断模型的性能和可靠性。 5. 故障诊断:最后,利用训练好的支持向量机模型对新的轴承振动数据进行故障诊断。将新的数据输入模型,模型将输出预测结果,即轴承是否存在故障。根据输出结果,可以进行相应的维护和修复操作,从而避免潜在的故障。 综上所述,基于 MATLAB贝叶斯优化支持向量机轴承故障诊断代码可以通过数据预处理、特征选择、参数优化、模型训练与评估以及故障诊断等步骤完成。这样可以提高轴承故障诊断的准确度和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值