【滤波跟踪】无迹卡尔曼滤波惯性导航+DVL组合导航【含Matlab源码 2019期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作扫描文章底部二维码。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab信号处理(仿真科研站版)仿真内容点击👇
Matlab信号处理(仿真科研站版)

⛄一、自主导航技术简介

1 基于SINS/声学的AUV自主导航
1.1 基于SINS/DVL的AUV自主导航技术

DVL是基于声呐多普勒效应的测速设备, 能提供较高精度的载体速度信息, 且其误差不随时间积累, 抗干扰能力强。因此在AUV自主导航中DVL可作为抑制SINS积累误差的重要辅助手段。DVL测速的配置分为3种:单波束配置、双波束Janus配置和四波束Janus配置, 其配置的测速原理如图1所示。
在这里插入图片描述
图1 3种多普勒速度计程仪测速配置示意图
由图中可以看出, 采用四波束Janus配置方式的DVL能够同时测定载体的横向和纵向的速度信息, 更能满足AUV的导航需求。SINS/DVL组合导航系统主要有松、紧2种组合方式。原理示意图如图2所示。DVL的原始数据是每个波束方向测量的相对速度, SINS/DVL松组合和紧组合的原理及其特点如表1所示[7,8]。

在这里插入图片描述
图2 捷联惯性导航系统/多普勒速度计程仪组合原理示意图
SINS/DVL组合导航系统所涉及的关键技术主要有以下5个方面:数据融合技术、异步信息融合技术、标定技术、DVL数据失效处理和故障检测技术。

  1. 数据融合技术

SINS/DVL组合导航系统使用导航滤波器进行数据融合。卡尔曼滤波器是一种有效的最优估计算法, 自20世纪70年代以来已广泛应用于组合导航系统, 丹麦生产的MARIDAN150型AUV[7]和挪威生产的HUGIN 1000型AUV[16]均使用卡尔曼滤波器。针对DVL测速易受到复杂的水下环境影响, 文献[17]将改进后的Sage-Husa自适应卡尔曼滤波算法引入SINS/DVL组合导航系统中, 仿真结果表明, 该算法具有较高的导航精度和鲁棒性。针对SINS/DVL组合导航系统的非线性状态模型, 文献[18]利用5阶球面最简相径容积卡尔曼滤波算法来改善SINS/DVL组合导航精度。

卡尔曼滤波器假设系统噪声和量测噪声的概率密度函数服从高斯分布, 但在实际工程应用中, 常难以满足上述条件, SINS/DVL组合导航的量测噪声可能呈现厚尾非高斯分布。因此, 通过鲁棒卡尔曼滤波算法来改善组合导航系统在复杂环境下的精度是重要且紧迫的[19]。文献[20]提出基于学生t分布噪声建模的鲁棒高斯近似滤波器来对状态向量和未知分布参数进行联合估计, 在理论上, 该滤波器能消除水下复杂环境给SINS/DVL组合导航带来的影响, 以提高SINS/DVL组合导航精度。

  1. 异步信息融合技术

实际应用中, 由于SINS和DVL采样频率不同, 而且数据融合中心接收到的SINS的导航信息与DVL的速度信息可能存在不同时长的滞后, 故需要研究异步多传感器的信息融合算法。针对多传感器网络系统的异步状态融合估计问题, 文献[21]推导了递归形式的线性最小均方误差估计器, 该估计器将数据融合时间段所间隔收集的异步量测值转换为融合时刻组合等效的量测值, 从而得出最优异步估计融合算法。文献[22]利用线性最小方差意义下的矩阵加权融合估计算法, 给出了分布式最优融合估计, 仿真实例验证了算法的有效性。文献[23]针对组合导航系统的传感器采样频率不同且存在量测滞后的问题, 提出一种基于多尺度数据分块的组合导航异步信息融合算法, 仿真结果表明该算法可有效提高SINS/DVL组合导航的定位精度。

  1. 标定技术

DVL误差主要包括了失准角误差及比例因子误差等。关于DVL误差标定问题已有许多研究, 最早的标定只针对航向失准角误差标定。随着研究的深入, 完成了对三轴失准角误差及其他误差的标定。失准角标定问题通常转化为两点集之间变换矩阵的估计问题, 这些方法需要一个可以提供准确定位信息的外部辅助传感器。估计技术包括最小二乘估计、求解Wahba’s问题、刚体旋转组的自适应辨识等。其中:文献[24]利用INS/GPS积分的导航解和DVL测量值构造了2个点集, 该方法基于奇异值分解的最小二乘估计方法作为Wahbar’s问题最稳定的解, 并完成了对失准角误差及比例因子误差的补偿;文献[25]在DVL测速原理的基础上, 分析了误差来源, 建立了基于比例因子及INS与DVL失准角的误差模型, 并以速度误差为观测值设计卡尔曼滤波器, 采用可观测性分析的方法对失准角及比例因子进行估计, 并在设定的3种运动情况下对标定参数进行可观测分析, 最后通过综合试验验证了算法的可靠性, 与传统标定方法相比, 该标定方法缩短了标定时间和标定距离;文献[26]同样基于可观测性的观点分析了在某些运动轨迹下部分失准角不可标定的原因, 并提出了一种INS和DVL的三点在线标定方法, 该方法通过水下航行器浮上水面2次接收到全球导航卫星系统 (global navigation satellite system, GNSS) 信号去改善导航系统的可观测性, 最后完成失准角及比例因子的标定;文献[27]从控制系统的角度研究了IMU/DVL组合水下导航, 分析表明在中等运动条件下组合系统是可观测的, 因此DVL失准角及比例尺因子误差可以在不依赖额外的外部GPS或声学信标的情况下进行现场校准。同时在DVL测量的辅助下, 还可以有效估计IMU的偏置误差。与上述方法相比, 文献[28]充分利用了INS导航参数该方法利用速度与加速度参数完成了对DVL与姿态传感器之间的对准旋转矩阵在线标定, 消除了对外部输入条件的依赖性, 其主要优点是不需要依靠额外的外部导航信息, 因此适用于水下航行的长时导航。

  1. DVL数据失效处理

DVL需要接收外界的反射波束, 其接收的声学信号与周围声学环境有很大关系。DVL在底跟踪工作模式下, 遇到海洋生物阻挡、海底强吸声地质、深沟和载体大角度运动等情况下会出现DVL数据失效, 这直接影响其导航性能。解决DVL数据失效的方法主要有2种:一种为隔离法, 即直接隔离掉DVL失效的数据;另一种为替换法, 即替换掉DVL的测速数据。隔离法本质是将SINS/DVL组合导航系统变成纯惯性导航系统, 导航精度会降低。目前研究热点为替换法, 该方法是设计一个载体相对地的速度估计器来替换掉DVL测速信息。文献[29]在DVL数据失效时, 利用DVL水跟踪量测作为DVL速度量测, 为SINS提供速度辅助。文献[30]基于一种偏最小二乘回归 (partial leas squares regression, PLSR) 和支持向量回归 (suppor vector regression, SVR) 相结合的方法建立了PLSR-SVR预测器, 有效延长DVL数据失效的容错时间从而提高了导航精度和可靠性。文献[31]提出了在线估计导航任务的海流参数模型, 其对海流的平均速度进行嵌入式实时估计, 利用模型辅助有效提高系统自主性和鲁棒性。文献[32]结合实时海流估计, 提出了模型辅助惯性导航系统, 在DVL数据失效时, 提高了导航系统的自主性和鲁棒性。

  1. 故障检测技术

针对由声散射、渔群和海底冲沟引起的DVL中的突变噪声会产生水平姿态误差, 并累积为位置误差的问题, 文献[33]提出了一种基于2规则的故障诊断方法, 当噪声发生突变时, 采用模型中的速度时间更新来进行数据融合, 而不是用DVL中的速度进行数据融合。研究SINS/DVL组合导航系统故障检测方法, 对提高组合导航系统的可靠性有重大意义。文献[34]利用小波技术对传感器输出信号进行故障诊断, 并进行故障隔离和系统重构, 再采用联邦式滤波器进行信息融合得出导航参数。组合导航系统中应用最广泛的故障检测方法即为卡方检测法。文献[35]提出了一种多传感器冗余导航系统的故障检测算法, 该算法根据序列概率比检验 (sequential probability ratio test, SPRT) 和卡方检验监测到的故障等级以及SPRT监测到的故障趋势, 对故障进行综合诊断。

SINS/DVL组合导航方法是AUV当前主流使用的水下自主导航技术。尽管在上述的关键技术上获得了较大成果, 但DVL只能输出速度信息, 而不能输出位置信息, 进而SINS/DVL组合导航系统的位置不可观测, 从而使得位置随着时间推移仍然发散。相比于DVL, 水声定位技术或地球物理辅助导航技术可以提供AUV位置信息, 因此, 可利用以上2种技术进一步提高导航精度。

1.2 基于SINS/水声定位的AUV自主导航技术
相对于电磁波而言, 声波在海水中传播的衰减效应要小的多。因此, 水声定位技术在AUV自主导航中扮演着重要的角色。水声定位系统按基线长度分类可分为LBL、SBL和USBL 3种。LBL的基线长度可与海深相比拟, 基阵由多个分布于海床上的应答器组成, 定位精度高, 适合在大面积作业区域内使用;但其数据更新率较低, 应答器的布放、校准以及回收、维护都异常繁琐, 作业成本高[36]。SBL的基线长度一般为几米到几十米之间, 各基元分布在船底或船舷上。受基线长度限制, SBL的精度介于LBL和USBL之间, 且其跟踪范围较小, 更适合于在母船附近的AUV导航定位。USBL的基阵可以集成于一个紧凑的整体单元内, 基线长度为分米级或小于等于半波长, 其体积尺寸最小, 可方便地安置于流噪声和结构噪声均较弱的某个有利位置, 且布放、回收极为便捷, 因此, USBL受到了越来越广泛的关注和应用。但USBL的精度低于LBL和SBL, 且定位精度非常依赖于深度传感器、姿态传感器等外围设备, 如何提高USBL的定位精度成为该领域研究的热点问题。3种水声定位系统的示意图见图3, 性能对比如表3所示。

⛄二、部分源代码

%% Set initial conditions
clear;
clc;
close all;
T=3000; %Total simulation time
INS_T=0.01;

DVL_T=1;
DVL_S=0;

P_filter=[1 2 3];
clrs = {‘b’,‘r’,‘g’,‘m’,‘b-.’};
legs={‘ESKF’,‘UKF’,‘EKF’,‘ESKF1’};
legs3sig={‘SAM 3\sigma’,‘PA 3\sigma’,‘SA 3\sigma’};
defaultfontname=‘Times New Roman’;
defaultfontsize=15;
defaultfontweight=‘normal’;
set(0,‘defaultlinelinewidth’,4)

% DVL_S=10.001;

N_INS=T/INS_T;
N_DVL=fix((T-DVL_S)/DVL_T);

% Constants
R0=6378137;
f=(6378137-6356752.3142)/6378137;
e=sqrt(f*(2-f)) ; %Earth eccentric
% grav0=9.780318*(1+5.302410-3*sin(pi/6)2-5.910-6*sin(2*pi/6)2);
dph2rps = (pi/180)/3600; % conversion constant from deg/hr to rad/sec
deg_to_rad = 0.01745329252;
rad_to_deg = 1/deg_to_rad;
micro_g_to_meters_per_second_squared = 9.80665E-6;

%% Generating Simulation data

Measurement_Noise.DVL=1*[2 2 2]‘* 1E-3; %in m/s measure vg
Measurement_Noise.DVL_FACTOR=[1 1 1]’* 1E-2; %in m

Measurement_Noise.AHRS=1*[0.03 0.03 0.3]'; %in degree
Measurement_Noise.Z=1*10^(-3);

Measurement_Noise.ACC=18
micro_g_to_meters_per_second_squared
[1 ;1;1]; %in m/s measure vg
Measurement_Noise.ACC_BIAS=1
[50 50 50]'micro_g_to_meters_per_second_squared;
% Measurement_Noise.ACC_BIAS_SIG=1
[1;1;1]; %standrad derivation of bias of GYO, rad/s
Measurement_Noise.ACC_FACTOR=1*[5, 0, 0;…
0, 5, 0;…
0, 0, 5] * 1E-4; % XX%
% Measurement_Noise.ACC_QUANT=1E-1*[1 ;1;1];

Measurement_Noise.GYO=1* 0.02*[1 ;1;1]60 dph2rps ; %random walk of GYO, rad/s
Measurement_Noise.GYO_BIAS=0.1*[1 1 1]’ * dph2rps; %bias of GYO, rad/s
% Measurement_Noise.GYO_BIAS_SIG=10.1dph2rps*[1;1;1]; %standrad derivation of bias of GYO, rad/s
Measurement_Noise.GYO_FACTOR=1* [5, 0, 0;…
0, 5, 0;…
0, 0, 5] * 1E-4;
% Measurement_Noise.GYO_QUANT=2E-3*[1 ;1;1];

% Navigation frame: NED
Target0.p0=[30pi/180 30pi/180 10 0deg_to_rad 0deg_to_rad 0*deg_to_rad]‘; %Target initial position
Target0.v0=[1.2 0 0 0 0 0]’; %Target initial velocity
Target0.vcurrent=[0 0 0]'; %Constant Irrotational current

Time.T=T; %Total simulation time
Time.INS_T=INS_T;
Time.DVL_T=DVL_T;
% Time.INS_S=10.1;
Time.DVL_S=DVL_S;

[p,pCa, VnS, AttS, AccS,US, ACCm, GYOm, DVLm,AHRSm,Zm] = Simulation_DVL_INS(Time,Target0,Measurement_Noise);

%
% IMUm=[ACCm(1:3,:);GYOm]‘;
% DVLm=DVLm’;
% Real_data=[p(1:6,:);pCa(1:3,:);VnS(1:3,:);AttS(1:3,:);AccS(1:3,:);US]‘;
%
%
% fid=fopen(‘DVL.txt’,‘wt’); %写入文件路径
% [m,n]=size(DVLm);
% for i=1:1:m
% for j=1:1:n
% if jn
% fprintf(fid,‘%f\n’,DVLm(i,j));
% else
% fprintf(fid,‘%f\t’,DVLm(i,j));
% end
% end
% end
% fclose(fid);
%
% fid=fopen(‘IMU.txt’,‘wt’); %写入文件路径
% [m,n]=size(IMUm);
% for i=1:1:m
% for j=1:1:n
% if j
n
% fprintf(fid,’%f\n’,IMUm(i,j));
% else
% fprintf(fid,‘%f\t’,IMUm(i,j));
% end
% end
% end
% fclose(fid);
%
% fid=fopen(‘Real_data.txt’,‘wt’); %写入文件路径
% [m,n]=size(Real_data);
% for i=1:1:m
% for j=1:1:n
% if j==n
% fprintf(fid,‘%f\n’,Real_data(i,j));
% else
% fprintf(fid,‘%f\t’,Real_data(i,j));
% end
% end
% end
% fclose(fid);

% pStore—LaLo representation, Real AUV postions at DVL/AHRS sampling epoch 6N_INS matrix
% pCaStore—Cartesian representation, Real AUV postions at DVL/AHRS sampling epoch 6
N_R matrix
% ACCm—Accelerometer measurements 3N_INS matrix (fx fy fz in m/s^2)
% GYOm—Gyroscope measurements 3
N_INS matrix (p q r in degree/s)
% DVLm—DVL measurements 3N_INS matrix (u,v, w in m/s)
% AHRSm—AHRS measurements 3
N_INS matrix (phi theta psi in degree)
%Zm—Depth sensor measurements 1*N_INS matrix (Z in m)

%%%%%%%%%%%%%%%%%%%%THE END%%%%%%%%%%%%%%%%%%%

%% Initialized
fprintf(1,’ Starting NAV computations \n’);
% load(‘fltTest.mat’);
p_0=Target0.p0(1:3);
v_0=Target0.v0(1:3);
A_0=Target0.p0(4:6);

q_0 = euler2q(A_0(1), A_0(2), A_0(3));
bg_0=zeros(3,1);
ba_0=zeros(3,1);
Kg_0=zeros(3,1);
Ka_0=zeros(3,1);

% % % % % % % % % % % % ESKF%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_eskf_0=[q_0; p_0;v_0;bg_0;ba_0;Kg_0;Ka_0];
xe_eskf_0=zeros(21,1);
x_eskf=x_eskf_0;
xe_eskf=xe_eskf_0;

P_att_eskf=3.046210^-4eye(3);
P_pos_eskf=diag([5/R0 5/R0 5]).^2;
P_vel_eskf=0.01eye(3);
P_bg_eskf=6
10^-11eye(3);
P_ba_eskf=6
10^-8eye(3);
P_Kg_eskf=0.00005
1eye(3);
P_Ka_eskf=0.0005
1*eye(3);

P_0_eskf=blkdiag(P_att_eskf, P_pos_eskf, P_vel_eskf, P_bg_eskf, P_ba_eskf, P_Kg_eskf, P_Ka_eskf);
P_eskf=P_0_eskf;

positionStore_eskf=zeros(3,N_INS-1); positionStore_eskf(:,1)=p_0;
velocityStore_eskf=zeros(3,N_INS-1); velocityStore_eskf(:,1)=v_0;
velocitybStore_eskf=zeros(3,N_INS-1); velocitybStore_eskf(:,1)=DCM(A_0)'*v_0;
UStore_eskf=zeros(1,N_INS-1); UStore_eskf(:,1)=norm(v_0);
attitudeStore_eskf=zeros(3,N_INS-1); attitudeStore_eskf(:,1)=A_0;
positionCaStore_eskf=zeros(3,N_INS-1); positionCaStore_eskf(:,1)=zeros(3,1);
AccStore_eskf=zeros(3,N_INS-1); AccStore_eskf(:,1)=zeros(3,1); %n系下的加速度
KaStore_eskf=zeros(3,N_INS-1); KgStore_eskf=zeros(3,N_INS-1);
baStore_eskf=zeros(3,N_INS-1); bgStore_eskf=zeros(3,N_INS-1);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 黄玉龙,张勇刚,赵玉新.自主水下航行器导航方法综述[J].水下无人系统学报. 2019,27(03)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值