【齿轮动力学】四自由度齿轮动力学震动模型(时变啮合刚度)Matlab仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代机械工程领域,齿轮作为关键的传动部件,广泛应用于各类机械设备中,从汽车发动机、工业减速器,到航空航天的精密传动系统,其性能的优劣直接关乎整个机械系统的运行稳定性、效率和可靠性。齿轮动力学,作为研究齿轮在运动和载荷作用下的行为和性能的学科,旨在深入剖析齿轮传动过程中的复杂现象,为齿轮系统的设计、优化以及故障诊断提供坚实的理论基础 。

随着工业技术的飞速发展,机械设备正朝着高速、重载、高精度的方向迈进,这对齿轮传动系统提出了更为严苛的要求。在高速运转的齿轮箱中,微小的振动和冲击都可能被放大,引发剧烈的振动和噪声,不仅降低传动效率,还会加速齿轮的磨损和疲劳,严重时甚至导致设备故障。因此,深入研究齿轮动力学,对于提升机械系统的性能和可靠性,具有至关重要的意义。

在齿轮动力学的研究范畴中,四自由度齿轮动力学震动模型占据着核心地位。该模型充分考虑了齿轮的平移和转动自由度,能够较为全面地描述齿轮在啮合过程中的动态行为,包括振动、冲击以及载荷分布等。通过建立和分析这一模型,我们可以深入了解齿轮系统的固有特性和动态响应,为齿轮的设计优化提供关键的理论依据。

而时变啮合刚度,作为四自由度齿轮动力学震动模型中的关键参数,其重要性不言而喻。在齿轮的啮合过程中,由于轮齿的进入和退出啮合、齿面的弹性变形以及制造误差等因素的影响,啮合刚度会随时间呈现周期性的变化。这种时变特性会引发齿轮系统的内部激励,进而导致振动、噪声等问题。准确地计算和分析时变啮合刚度,对于揭示齿轮传动的动力学本质,预测齿轮系统的动态性能,以及制定有效的减振降噪措施,都起着决定性的作用。

对四自由度齿轮动力学震动模型及时变啮合刚度的研究,不仅有助于优化齿轮系统的设计,提高传动效率和可靠性,还能为齿轮系统的故障诊断和预测提供有力的支持。通过监测时变啮合刚度的变化,可以及时发现齿轮的磨损、裂纹等故障隐患,实现故障的早期预警和预防,从而降低设备的维护成本,提高生产效率。在现代机械工程中,对这一领域的深入研究具有不可替代的重要性和紧迫性,是推动机械技术进步的关键环节。

二、齿轮动力学基础概述

(一)齿轮传动系统的工作原理

齿轮传动系统作为机械传动领域中应用最为广泛的传动方式之一,其基本构成涵盖了主动齿轮、从动齿轮以及支撑它们的轴和轴承等关键部件 。在运转过程中,主动齿轮通过电机或其他动力源获得旋转动力,其轮齿与从动齿轮的轮齿相互啮合,按照一定的传动比将主动齿轮的旋转运动和扭矩传递给从动齿轮,从而实现动力的传递和转速的改变。

以常见的汽车变速箱为例,发动机输出的高速旋转动力通过输入轴传递到变速箱内的主动齿轮,主动齿轮与不同齿数的从动齿轮啮合,可实现不同的传动比,从而满足汽车在起步、加速、行驶等不同工况下对扭矩和转速的需求。又比如工业减速器,通过多级齿轮传动,将电机的高转速、低扭矩转换为低转速、高扭矩,以驱动各种工业设备平稳运行。在这一过程中,齿轮的齿形、模数、齿数等几何参数,以及齿轮之间的中心距、啮合角等安装参数,都对齿轮传动系统的性能有着至关重要的影响。这些参数的合理设计和精确控制,是保证齿轮传动系统高效、平稳运行的基础。

(二)动力学分析在齿轮系统中的重要性

动力学分析在齿轮系统中占据着举足轻重的地位,对保障齿轮系统的可靠性、降低振动噪声、延长使用寿命等方面发挥着关键作用。在实际运行中,齿轮系统不仅要承受来自外部的载荷,如电机的驱动力、工作机械的阻力等,还要应对由于自身的运动特性而产生的惯性力、离心力等。这些复杂的载荷作用在齿轮上,会导致齿轮产生应力、变形和振动。通过动力学分析,可以准确计算出齿轮在不同工况下的受力情况和变形程度,为齿轮的强度设计和疲劳寿命预测提供可靠依据,从而有效保障齿轮系统在复杂工况下的可靠性,降低故障发生的概率。

振动和噪声是齿轮系统运行过程中常见的问题,不仅会影响设备的工作环境和操作人员的身心健康,还可能预示着齿轮系统存在潜在的故障隐患。动力学分析可以深入研究齿轮系统的振动特性,包括振动的频率、振幅和相位等,揭示振动产生的机理和传播规律。通过分析结果,工程师可以采取针对性的措施,如优化齿轮的齿形、调整齿轮的啮合参数、增加减振装置等,来降低齿轮系统的振动和噪声水平,提高设备的运行质量和稳定性。

此外,动力学分析还有助于优化齿轮系统的设计,提高传动效率。通过对不同设计方案的动力学性能进行对比分析,可以选择出最优的齿轮参数和结构形式,减少能量损失,提高传动效率,降低运行成本。动力学分析还能为齿轮系统的故障诊断和维护提供技术支持,通过监测齿轮的动态响应,及时发现潜在的故障问题,并采取相应的维修措施,从而延长齿轮系统的使用寿命,提高设备的可用性。

三、四自由度齿轮动力学震动模型解析

(一)模型的建立背景与理论依据

在齿轮动力学的研究进程中,早期的单自由度模型仅能简单描述齿轮在啮合线方向的振动,难以全面反映齿轮的复杂运动。随着研究的深入,多自由度模型应运而生。四自由度齿轮动力学震动模型的构建,正是为了弥补简单模型的不足,更精确地模拟齿轮在实际工况下的动态行为。它综合考虑了齿轮的平移和转动,能够全面捕捉齿轮在不同方向上的运动和受力情况,为深入研究齿轮传动系统的动力学特性提供了有力工具。

该模型的建立基于经典的牛顿第二定律和达朗贝尔原理。牛顿第二定律描述了物体的加速度与所受外力之间的关系,为模型中力与运动的分析提供了基本框架。达朗贝尔原理则将动力学问题转化为静力学问题,通过引入惯性力,使得在分析复杂的齿轮系统时能够采用更为简便的静力学方法。在四自由度模型中,每个自由度上的运动方程都依据这些基本原理建立,充分考虑了齿轮所受的各种力,如啮合力、惯性力、阻尼力等。

为了使模型更具实际应用价值,在建立过程中还引入了一些合理的假设。假设齿轮为刚性体,忽略齿轮的弹性变形对整体运动的影响,这样可以简化模型的计算,同时在一定程度上反映齿轮的主要运动特征。此外,还假设齿轮的啮合过程是理想的,不考虑齿面的摩擦、磨损以及制造和安装误差等因素,这些假设在模型的初步建立和理论分析阶段,有助于突出主要问题,简化分析过程,为后续进一步完善模型奠定基础。

(二)模型的具体结构与参数设定

四自由度齿轮动力学震动模型包含四个关键的自由度,分别为两个平移自由度和两个转动自由度。平移自由度描述了齿轮在啮合线方向(x 方向)和垂直于啮合线方向(y 方向)的直线运动 。在啮合线方向的平移运动,直接反映了齿轮在传递动力过程中的轴向位移变化,这对于研究齿轮的啮合冲击和载荷分布具有重要意义。而垂直于啮合线方向的平移运动,则与齿轮的振动和噪声密切相关,通过分析该方向的运动,可以深入了解齿轮系统的动态稳定性。

两个转动自由度分别对应主动齿轮和从动齿轮的旋转运动(θ1 和 θ2)。主动齿轮的旋转运动是整个齿轮传动系统的动力输入源,其转速和扭矩的变化直接影响着从动齿轮的运动状态。从动齿轮的旋转运动则是动力输出的体现,通过分析从动齿轮的转动自由度,可以研究齿轮传动系统的传动比、效率以及输出扭矩的波动情况。这四个自由度相互耦合,共同决定了齿轮在传动过程中的复杂动态行为。

在模型中,质量、刚度、阻尼等参数是描述齿轮系统动力学特性的关键要素。质量参数(m1 和 m2)分别代表主动齿轮和从动齿轮的质量,它反映了齿轮的惯性大小,对齿轮在运动过程中的加速度和惯性力有着直接的影响。在高速运转的齿轮系统中,较大的质量会产生较大的惯性力,从而增加齿轮的振动和磨损。

刚度参数主要包括时变啮合刚度 k (t) 和支撑刚度。时变啮合刚度是四自由度齿轮动力学震动模型中最为关键的参数之一,它反映了齿轮在啮合过程中轮齿的弹性变形能力。由于齿轮在啮合过程中,参与啮合的轮齿对数和接触状态不断变化,导致啮合刚度随时间呈现周期性的变化。准确计算和分析时变啮合刚度,对于揭示齿轮传动系统的内部激励机制和振动特性至关重要。支撑刚度则体现了轴承等支撑部件对齿轮的支撑能力,它对齿轮的振动模态和固有频率有着重要影响。如果支撑刚度不足,会导致齿轮在运转过程中产生较大的振动和位移,影响传动精度和稳定性。

阻尼参数(c1 和 c2)用于描述齿轮系统在运动过程中的能量耗散特性,主要包括啮合阻尼和结构阻尼。啮合阻尼主要来源于齿面之间的摩擦和润滑,它能够消耗齿轮在啮合过程中产生的振动能量,起到减振降噪的作用。结构阻尼则与齿轮的材料特性和结构形式有关,它反映了齿轮在振动过程中内部结构的能量损耗。合理设置阻尼参数,可以有效降低齿轮系统的振动幅值,提高系统的动态稳定性。这些参数的准确设定和合理取值,需要综合考虑齿轮的材料、几何尺寸、工作条件以及制造工艺等多方面因素,通过理论计算、实验测试以及经验公式等方法来确定。

(三)与其他常见齿轮动力学模型的对比优势

与单自由度齿轮动力学模型相比,四自由度模型的优势显著。单自由度模型仅考虑了齿轮在啮合线方向的振动,将齿轮系统简化为一个在单一方向上振动的弹簧 - 质量系统,无法描述齿轮在其他方向的运动和复杂的动态特性。而四自由度模型全面考虑了齿轮的平移和转动,能够更真实地反映齿轮在实际工况下的运动状态。在分析齿轮的振动和噪声问题时,单自由度模型只能给出啮合线方向的振动响应,对于垂直于啮合线方向的振动以及齿轮的扭转振动无法进行有效分析。而四自由度模型可以同时考虑多个方向的振动,通过对不同自由度上振动响应的分析,能够更准确地预测齿轮系统的振动和噪声水平,为减振降噪措施的制定提供更全面的依据。

与一些高阶多自由度模型相比,四自由度模型在保证一定精度的前提下,具有更好的计算效率和可解释性。高阶多自由度模型虽然能够更精确地描述齿轮系统的复杂动力学行为,但往往需要考虑更多的因素和参数,导致模型的复杂度大幅增加,计算量呈指数级增长。这不仅增加了计算成本和时间,还使得模型的求解和分析变得极为困难。而且,高阶多自由度模型中众多参数和复杂的方程关系,使得模型的物理意义不够直观,难以从中直接获取关键的动力学信息。四自由度模型则在复杂度和精度之间找到了较好的平衡,它既能够考虑到齿轮运动的主要自由度,准确描述齿轮系统的关键动力学特性,又避免了过度复杂的计算和分析,使得模型的计算效率较高,物理意义清晰,便于工程应用和实际操作。在工程设计和分析中,工程师可以通过对四自由度模型的分析,快速了解齿轮系统的动态性能,及时发现潜在的问题,并采取相应的优化措施,从而提高设计效率和产品质量。

四、时变啮合刚度的深度剖析

(一)时变啮合刚度的概念与产生原因

时变啮合刚度,从本质上讲,是指在齿轮啮合过程中,啮合刚度随时间呈现周期性变化的特性。其产生的原因主要源于齿轮啮合过程中的两个关键因素:啮合齿对数的变化以及轮齿的弹性变形。

在齿轮的啮合过程中,重合度是一个重要的参数,它决定了同时参与啮合的轮齿对数。通常情况下,齿轮的重合度并非整数,这就导致在啮合过程中,参与啮合的轮齿对数会随时间发生周期性的变化。当齿轮从单齿啮合进入双齿啮合时,啮合齿对数增加,轮齿间的承载能力增强,使得啮合刚度增大;反之,当从双齿啮合过渡到单齿啮合时,啮合齿对数减少,啮合刚度相应减小。以常见的渐开线圆柱齿轮为例,在一个啮合周期内,随着齿轮的转动,啮合点沿着齿廓移动,轮齿的进入和退出啮合会导致啮合齿对数在单齿和双齿之间交替变化,从而使得啮合刚度呈现出周期性的波动。

轮齿在承受载荷时,会发生弹性变形,这也是导致时变啮合刚度的重要原因。当轮齿进入啮合时,齿面受到挤压,齿根产生弯曲应力,轮齿会发生弹性变形,这种变形会影响啮合刚度。而且,在啮合过程中,随着载荷的变化以及轮齿接触位置的改变,轮齿的弹性变形程度也会不断变化,进而导致啮合刚度随时间而改变。当载荷增大时,轮齿的弹性变形增大,啮合刚度会相应减小;当载荷减小时,弹性变形减小,啮合刚度则会增大。

(二)计算方法与影响因素探讨

计算时变啮合刚度的方法丰富多样,每种方法都有其独特的原理和适用范围。基于双齿啮合理论的计算方法,将齿轮传动系统视为多自由度的多体动力学系统,通过建立双齿啮合力模型,构建系统的运动学和动力学方程,并运用数值计算方法求解。这种方法能够充分考虑齿面接触、弹性变形以及齿轮轴向变形等复杂因素,计算结果较为准确。但该方法计算量庞大,计算时间长,在计算过程中需要全面考虑众多影响因素,包括齿面接触状态的变化、材料的非线性特性以及齿轮的制造误差等,这使得计算难度大幅增加,对计算资源和计算能力提出了较高的要求 。

有限元法作为一种广泛应用的数值计算方法,在时变啮合刚度的计算中也具有重要地位。它通过将齿轮模型离散成有限个区域,建立相应的有限元方程进行求解。在计算过程中,能够将啮合接触区域的刚度系数、材料的刚度和变形等因素纳入考虑范围,对啮合接触区域的计算较为准确,可有效模拟齿轮在复杂工况下的力学行为。然而,该方法的计算过程较为复杂,需要大量的计算资源和时间,且要求使用者熟练掌握有限元方法理论和计算软件的使用方法。在建立有限元模型时,需要对齿轮的几何形状、材料属性、边界条件等进行精确的定义和设置,任何一个环节的偏差都可能影响计算结果的准确性。

除上述方法外,还有基于平衡方程法、能量法、实验测试法等计算时变啮合刚度的方法。基于平衡方程法的计算方法基于机构平衡原理,将齿轮系统建模成等效质点系统,利用平衡方程得出时变啮合刚度。该方法计算过程简单,计算速度较快,但仅适用于简单齿轮系统,对于复杂齿轮系统计算精度较低,无法考虑载荷变化对啮合刚度的影响等复杂因素。能量法则是通过分析齿轮在啮合过程中的能量变化来计算啮合刚度,它从能量的角度揭示了齿轮啮合的力学本质,但在实际应用中,能量的计算和转化关系较为复杂,需要进行合理的假设和简化。实验测试法则是通过力学实验和振动实验等手段,直接测量齿轮的实际运动状态,并计算得到其时变啮合刚度。这种方法可以真实反映齿轮的实际工作状态,但需要实验测试设备和条件,对齿轮系统的干扰比较大,同时也受到实验误差的影响,且需要较多的试验数据和计算手段,相对较为麻烦。

时变啮合刚度受到多种因素的综合影响。齿轮的模数、齿数、齿宽、压力角等参数对其有着显著影响。模数越大,轮齿的尺寸越大,承载能力越强,啮合刚度通常也越大;齿数增加会使重合度增大,从而导致啮合刚度的波动减小;齿宽的增加会使轮齿的接触面积增大,进而提高啮合刚度;压力角的改变会影响轮齿的受力分布,从而对啮合刚度产生影响。 工作载荷和转速也是影响时变啮合刚度的重要因素。随着工作载荷的增加,轮齿的弹性变形增大,啮合刚度会相应减小;而转速的提高会使齿轮的动态特性发生变化,如产生更大的惯性力和离心力,这些力会影响轮齿的啮合状态,进而影响时变啮合刚度。此外,齿轮的制造误差、安装误差以及齿面磨损等因素,也会导致啮合刚度的变化。制造误差和安装误差会使轮齿的啮合状态不理想,产生额外的冲击和振动,从而影响啮合刚度;齿面磨损会使齿面的粗糙度增加,接触状态变差,导致啮合刚度下降。

⛳️ 运行结果

📣 部分代码

end

L_star=Xi(1);    M_star=Xi(2);    P_star=Xi(3);    Q_star=Xi(4);

h0=r_b*((alfa_0+teta_b)*cos(alfa_0)-sin(alfa_0));

h_q=h0-q_0*sin(alfa_c);

dbeta=(alfa_1-alfa_0)/1000;

for i=1:1001

    beta=(i-1)*dbeta+alfa_0;

    h=r_b*((beta+teta_b)*cos(beta)-sin(beta));

    d=r_b*((beta+teta_b)*sin(beta)+cos(beta))-r;

    u_f=d+r-r_d-h*tan(beta);

    invK_f=(cos(beta)^2/(E*L))*(L_star*(u_f/S_f)^2 + M_star*(u_f/S_f) + P_star*(1+Q_star*(tan(beta))^2));

    invK_a=0;

    invK_b=0;

end

L_star=Xi(1);    M_star=Xi(2);    P_star=Xi(3);    Q_star=Xi(4);

h0=r_b*((alfa_0+teta_b)*cos(alfa_0)-sin(alfa_0));

h_q=h0-q_0*sin(alfa_c);

dbeta=(alfa_1-alfa_0)/1000;

for i=1:1001

    beta=(i-1)*dbeta+alfa_0;

    h=r_b*((beta+teta_b)*cos(beta)-sin(beta));

    d=r_b*((beta+teta_b)*sin(beta)+cos(beta))-r;

    u_f=d+r-r_d-h*tan(beta);

    invK_f=(cos(beta)^2/(E*L))*(L_star*(u_f/S_f)^2 + M_star*(u_f/S_f) + P_star*(1+Q_star*(tan(beta))^2));

    invK_a=0;

    invK_b=0;

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值