【有序充电算法】考虑不同充电需求的电动汽车有序充电调度方法附matlab实现

本文提出了一种电动汽车充电调度策略,考虑快速、普通和慢速充电需求,依据电网负荷动态分配充电资源,通过仿真实验证明其在满足需求和电网稳定性方面的有效性。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

随着电动汽车(EV)的普及,有序充电调度已成为一项重要的研究课题。有序充电调度是指在满足不同充电需求的情况下,合理分配充电资源,以实现电网的安全稳定运行和电动汽车的经济高效充电。本文提出了一种考虑不同充电需求的电动汽车有序充电调度方法。该方法首先考虑了电动汽车的充电需求,并将其分为三类:即快速充电、普通充电和慢速充电。然后,该方法根据电网的负荷情况,对不同充电需求的电动汽车进行有序充电调度。最后,该方法通过仿真实验验证了其有效性。

1. 绪论

随着电动汽车(EV)的普及,有序充电调度已成为一项重要的研究课题。有序充电调度是指在满足不同充电需求的情况下,合理分配充电资源,以实现电网的安全稳定运行和电动汽车的经济高效充电。

有序充电调度面临着许多挑战。首先,电动汽车的充电需求具有很大的不确定性。其次,电网的负荷情况也是不断变化的。第三,电动汽车的充电时间和充电功率也存在着一定的限制。

2. 相关工作

近年来,国内外学者对电动汽车有序充电调度进行了广泛的研究。文献[1]提出了一种基于遗传算法的电动汽车有序充电调度方法。该方法考虑了电动汽车的充电需求和电网的负荷情况,并通过遗传算法优化充电调度方案。文献[2]提出了一种基于粒子群算法的电动汽车有序充电调度方法。该方法考虑了电动汽车的充电需求、电网的负荷情况和充电站的容量限制,并通过粒子群算法优化充电调度方案。文献[3]提出了一种基于蚁群算法的电动汽车有序充电调度方法。该方法考虑了电动汽车的充电需求、电网的负荷情况和充电站的容量限制,并通过蚁群算法优化充电调度方案。

3. 方法

本文提出了一种考虑不同充电需求的电动汽车有序充电调度方法。该方法首先考虑了电动汽车的充电需求,并将其分为三类:即快速充电、普通充电和慢速充电。然后,该方法根据电网的负荷情况,对不同充电需求的电动汽车进行有序充电调度。最后,该方法通过仿真实验验证了其有效性。

3.1 电动汽车充电需求分类

电动汽车的充电需求可以分为三类:即快速充电、普通充电和慢速充电。

  • 快速充电:快速充电是指电动汽车在短时间内(通常为30分钟以内)将电池电量从0%充至80%或以上。快速充电适用于需要快速补充电量的电动汽车,例如长途旅行的电动汽车。

  • 普通充电:普通充电是指电动汽车在较长时间内(通常为1-2小时)将电池电量从0%充至100%。普通充电适用于不需要快速补充电量的电动汽车,例如日常通勤的电动汽车。

  • 慢速充电:慢速充电是指电动汽车在更长时间内(通常为4-8小时)将电池电量从0%充至100%。慢速充电适用于不需要快速补充电量的电动汽车,例如停放在家中的电动汽车。

3.2 电动汽车有序充电调度

电动汽车有序充电调度是指在满足不同充电需求的情况下,合理分配充电资源,以实现电网的安全稳定运行和电动汽车的经济高效充电。

电动汽车有序充电调度需要考虑以下因素:

  • 电动汽车的充电需求:电动汽车的充电需求包括充电时间、充电功率和充电地点等。

  • 电网的负荷情况:电网的负荷情况包括峰值负荷、谷值负荷和平均负荷等。

  • 充电站的容量限制:充电站的容量限制是指充电站能够同时为多少辆电动汽车充电。

电动汽车有序充电调度可以分为以下几个步骤:

  1. 收集电动汽车的充电需求信息。

  2. 预测电网的负荷情况。

  3. 计算充电站的容量限制。

  4. 根据电动汽车的充电需求信息、电网的负荷情况和充电站的容量限制,制定电动汽车有序充电调度方案。

  5. 执行电动汽车有序充电调度方案。

📣 部分代码

function [EV] = getPublicEV(n)      init;%获取全局变量        t_c = randn([n 1]);    t_c = t_c*sigma_2tc + mu_2tc;    t_c = t_c.*(0<t_c & t_c<=mu_2tc+12)+(t_c+24).*(mu_2tc-12<t_c & t_c<=0);        t_dis = randn([n 1]);    t_dis = t_dis*sigma_2tdis + mu_2tdis;    t_dis = t_dis.*(mu_2tdis-12<t_dis & t_dis<=24)+(t_dis-24).*(24<t_dis & t_dis<=mu_2tdis+12);        J_c = ceil(t_c/Delta_T);%向上取整    J_c(J_c==0) = 96;%0时隙就是昨天的96    J_dis = floor(t_dis/Delta_T);%向下取整    J_dis(J_dis==0) = 96;%0时隙就是昨天的96        SOC_con = unifrnd(SOC_con_a,SOC_con_b,n,1);%产生均匀分布的随机数    SOC_min = unifrnd(SOC_min_a,SOC_min_b,n,1);    SOC_max = unifrnd(SOC_max_a,SOC_max_b,n,1);        EV = table(t_c,t_dis,J_c,J_dis,SOC_con,SOC_min,SOC_max);      end    

⛳️ 运行结果

3.3 仿真实验

为了验证本文提出的电动汽车有序充电调度方法的有效性,我们进行了仿真实验。仿真实验的条件如下:

  • 电动汽车数量:100辆

  • 电网负荷:峰值负荷为1000kW,谷值负荷为500kW,平均负荷为750kW

  • 充电站容量:50辆

仿真实验的结果表明,本文提出的电动汽车有序充电调度方法能够有效地满足不同充电需求的电动汽车的充电需求,并能够实现电网的安全稳定运行。

4. 结论

本文提出了一种考虑不同充电需求的电动汽车有序充电调度方法。该方法首先考虑了电动汽车的充电需求,并将其分为三类:即快速充电、普通充电和慢速充电。然后,该方法根据电网的负荷情况,对不同充电需求的电动汽车进行有序充电调度。最后,该方法通过仿真实验验证了其有效性。

🔗 参考文献

[1]沈彦伶.含光伏发电的电动汽车充电站有序充电控制技术研究[D].中国科学院大学,2015.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值