✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着无人机技术的快速发展,无人机在城市环境中执行任务的需求日益增加。在复杂城市地形中,无人机三维路径规划至关重要,以确保安全性和任务效率。本文提出了一种基于科莫多巨蜥算法 (KMA) 的无人机三维航迹规划方法。KMA 算法是一种受科莫多巨蜥捕猎行为启发的群智能优化算法,具有较强的全局搜索能力和收敛速度。该方法将 KMA 算法与三维航迹规划问题相结合,通过迭代优化无人机的飞行路径,实现复杂城市地形下的安全高效航迹规划。
引言
无人机三维路径规划是指在三维空间中为无人机确定一条从起点到终点的最佳飞行路径。在复杂城市地形中,无人机面临着建筑物、电线杆等障碍物的遮挡,需要考虑三维空间的约束。传统的路径规划方法往往基于二维平面,无法有效处理三维障碍物。因此,研究三维航迹规划方法对于无人机在城市环境中安全高效运行至关重要。
科莫多巨蜥算法 (KMA)
科莫多巨蜥算法 (KMA) 是一种受科莫多巨蜥捕猎行为启发的群智能优化算法。科莫多巨蜥是一种大型爬行动物,以其敏锐的嗅觉和耐心的捕猎策略而闻名。KMA 算法模拟了科莫多巨蜥的捕猎过程,通过个体之间的信息交换和协作,逐步逼近最优解。
KMA 算法的主要步骤如下:
-
初始化:随机生成一组个体,每个个体代表一个潜在的解决方案。
-
评估:计算每个个体的适应度值,适应度值衡量个体解决方案的优劣程度。
-
信息交换:个体之间通过嗅觉感知机制交换信息,共享各自探索到的信息。
-
更新位置:个体根据共享的信息更新自己的位置,朝着更优的方向移动。
-
重复步骤 2-4:直到满足终止条件(如达到最大迭代次数或达到目标适应度值)。
无人机三维航迹规划
无人机三维航迹规划问题可以表述为:给定无人机的起点和终点,在满足安全约束(如避障、高度限制等)的前提下,找到一条从起点到终点的最优飞行路径。
基于 KMA 的三维航迹规划方法
本文提出的基于 KMA 的三维航迹规划方法将 KMA 算法与三维航迹规划问题相结合,通过迭代优化无人机的飞行路径。具体步骤如下:
-
初始化:随机生成一组个体,每个个体代表一条潜在的航迹。
-
评估:计算每个个体的适应度值,适应度值考虑航迹的长度、平滑度、安全性等因素。
-
信息交换:个体之间通过嗅觉感知机制交换信息,共享各自探索到的航迹信息。
-
更新航迹:个体根据共享的信息更新自己的航迹,朝着更优的方向优化航迹。
-
重复步骤 2-4:直到满足终止条件。
📣 部分代码
function DrawPic(result1,data,str)
figure
plot3(data.S0(:,1)*data.unit(1),data.S0(:,2)*data.unit(2),data.S0(:,3)*data.unit(3),'o','LineWidth',1.5,...
'MarkerEdgeColor','g',...
'MarkerFaceColor','g',...
'MarkerSize',8)
hold on
plot3(data.E0(:,1)*data.unit(1),data.E0(:,2)*data.unit(2),data.E0(:,3)*data.unit(3),'h','LineWidth',1.5,...
'MarkerEdgeColor','g',...
'MarkerFaceColor','g',...
'MarkerSize',8)
plot3(result1.path(:,1).*data.unit(1),result1.path(:,2).*data.unit(2),result1.path(:,3).*data.unit(3),'-','LineWidth',1.5,...
'MarkerEdgeColor','g',...
'MarkerFaceColor','g',...
'MarkerSize',10)
for i=1:data.numObstacles
x=1+data.Obstacle(i,1);
y=1+data.Obstacle(i,2);
z=1+data.Obstacle(i,3);
long=data.Obstacle(i,4);
wide=data.Obstacle(i,5);
pretty=data.Obstacle(i,6);
x0=ceil(x/data.unit(1))*data.unit(1);
y0=ceil(y/data.unit(2))*data.unit(2);
z0=ceil(z/data.unit(3))*data.unit(3);
long0=ceil(long/data.unit(1))*data.unit(1);
wide0=ceil(wide/data.unit(2))*data.unit(2);
pretty0=ceil(pretty/data.unit(3))*data.unit(3);
[V,F] = DrawCuboid(long0, wide0, pretty0, x0,y0,z0);
end
legend('起点','终点','location','north')
grid on
%axis equal
xlabel('x(km)')
ylabel('y(km)')
zlabel('z(km)')
title([str, '最优结果:', num2str(result1.fit)])
% figure
% plot3(data.S0(:,1)*data.unit(1),data.S0(:,2)*data.unit(2),data.S0(:,3)*data.unit(3),'o','LineWidth',2,...
% 'MarkerEdgeColor','r',...
% 'MarkerFaceColor','r',...
% 'MarkerSize',10)
% hold on
% plot3(data.E0(:,1)*data.unit(1),data.E0(:,2)*data.unit(2),data.E0(:,3)*data.unit(3),'h','LineWidth',2,...
% 'MarkerEdgeColor','r',...
% 'MarkerFaceColor','r',...
% 'MarkerSize',10)
% plot3(result1.path(:,1).*data.unit(1),result1.path(:,2).*data.unit(2),result1.path(:,3).*data.unit(3),'-','LineWidth',2,...
% 'MarkerEdgeColor','k',...
% 'MarkerFaceColor','r',...
% 'MarkerSize',10)
% for i=1:data.numObstacles
% x=1+data.Obstacle(i,1);
% y=1+data.Obstacle(i,2);
% z=1+data.Obstacle(i,3);
% long=data.Obstacle(i,4);
% wide=data.Obstacle(i,5);
% pretty=data.Obstacle(i,6);
%
% x0=ceil(x/data.unit(1))*data.unit(1);
% y0=ceil(y/data.unit(2))*data.unit(2);
% z0=ceil(z/data.unit(3))*data.unit(3);
% long0=ceil(long/data.unit(1))*data.unit(1);
% wide0=ceil(wide/data.unit(2))*data.unit(2);
% pretty0=ceil(pretty/data.unit(3))*data.unit(3);
% [V,F] = DrawCuboid(long0, wide0, pretty0, x0,y0,z0);
% end
% legend('起点','终点','location','north')
% grid on
% xlabel('x(km)')
% ylabel('y(km)')
% zlabel('z(km)')
% title([str, '最优结果:', num2str(result1.fit)])
end
⛳️ 运行结果
实验结果
为了验证所提方法的有效性,在不同复杂度的城市地形中进行了仿真实验。实验结果表明,基于 KMA 的三维航迹规划方法能够有效地规划出安全高效的航迹,避开障碍物,满足高度限制等约束条件。与其他传统方法相比,该方法具有更好的全局搜索能力和收敛速度,能够在复杂城市地形中找到更优的航迹。
结论
本文提出了一种基于科莫多巨蜥算法 (KMA) 的无人机三维航迹规划方法。该方法将 KMA 算法与三维航迹规划问题相结合,通过迭代优化无人机的飞行路径,实现复杂城市地形下的安全高效航迹规划。仿真实验结果表明,该方法具有较强的全局搜索能力和收敛速度,能够有效地规划出满足约束条件的航迹,为无人机在城市环境中安全高效运行提供了有力的支持。
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类