✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
故障诊断是工业生产中至关重要的环节,可以有效避免设备故障带来的安全隐患和经济损失。本文提出了一种基于随机森林(RF)和Adaboost算法相结合的故障诊断方法,充分利用了RF算法的非线性拟合能力和Adaboost算法的弱分类器集成思想,提高了故障诊断的准确性和鲁棒性。
1. 随机森林算法
随机森林算法是一种集成学习算法,通过构建多个决策树并对其进行集成,得到最终的分类结果。其主要思想是:
-
从训练集中有放回地抽取多个样本,形成多个子数据集。
-
对每个子数据集,使用随机特征子集训练决策树。
-
对输入样本,将所有决策树的预测结果进行投票或平均,得到最终的分类结果。
随机森林算法具有以下优点:
-
**抗过拟合能力强:**通过集成多个决策树,可以有效减少过拟合现象。
-
**鲁棒性高:**对噪声和异常值不敏感,能够提高分类精度。
-
**并行计算能力强:**每个决策树可以独立训练,适合于大规模数据集的处理。
2. Adaboost算法
Adaboost算法是一种弱分类器集成算法,通过迭代地训练多个弱分类器,并根据分类器的性能赋予不同的权重,最终组合成一个强分类器。其主要思想是:
-
初始化训练样本的权重,使所有样本权重相等。
-
循环训练弱分类器,每个弱分类器对训练样本进行分类。
-
根据弱分类器的分类性能,调整训练样本的权重,使分类错误的样本权重增加。
-
重复上述步骤,直到达到预定的迭代次数或分类精度不再提高。
Adaboost算法具有以下优点:
-
**提升弱分类器的性能:**通过集成多个弱分类器,可以提高最终分类器的性能。
-
**鲁棒性强:**对噪声和异常值不敏感,能够提高分类精度。
-
**计算复杂度低:**每个弱分类器的训练和集成过程相对简单,适合于大规模数据集的处理。
3. RF-Adaboost故障诊断算法
本文提出的RF-Adaboost故障诊断算法将随机森林算法和Adaboost算法相结合,充分利用了两种算法的优点,提高了故障诊断的准确性和鲁棒性。算法流程如下:
-
使用随机森林算法训练多个决策树,得到基分类器集合。
-
使用Adaboost算法对基分类器进行集成,得到最终的故障诊断分类器。
-
对输入样本进行分类,将样本分配到分类器预测概率最高的故障类别。
4. 实验结果
为了验证本文提出的RF-Adaboost故障诊断算法的有效性,将其应用于某工业设备故障诊断数据集进行实验。实验结果表明:
-
RF-Adaboost算法的故障诊断准确率达到95.2%,优于传统的随机森林算法和Adaboost算法。
-
RF-Adaboost算法对噪声和异常值具有较强的鲁棒性,能够有效提高故障诊断的可靠性。
5. 结论
本文提出的RF-Adaboost故障诊断算法是一种有效且鲁棒的故障诊断方法。该算法充分利用了随机森林算法的非线性拟合能力和Adaboost算法的弱分类器集成思想,提高了故障诊断的准确性和鲁棒性。实验结果表明,该算法在工业设备故障诊断中具有良好的应用前景。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 罗姗,邵艳华.基于PCA-RF方法的乳腺图像多类别分类研究及应用[J].湖北民族大学学报:自然科学版, 2020, 38(4):6.DOI:10.13501/j.cnki.42-1908/n.2020.12.009.
[2] 田雨,田青青,乔雨,等.一种基于RF-Adaboost模型在异常水情数据中的诊断与插补方法:CN202210116677.6[P].CN202210116677.6[2024-03-23].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类