【RF分类】基于随机森林RF-Adaboost算法实现故障诊断附matlab代码

本文介绍了一种利用随机森林和Adaboost算法的集成策略,设计了一种新型故障诊断方法。通过结合两者的优点,该方法在工业设备故障诊断中表现出高准确性和鲁棒性,实验结果显示其性能优于传统算法。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

故障诊断是工业生产中至关重要的环节,可以有效避免设备故障带来的安全隐患和经济损失。本文提出了一种基于随机森林(RF)和Adaboost算法相结合的故障诊断方法,充分利用了RF算法的非线性拟合能力和Adaboost算法的弱分类器集成思想,提高了故障诊断的准确性和鲁棒性。

1. 随机森林算法

随机森林算法是一种集成学习算法,通过构建多个决策树并对其进行集成,得到最终的分类结果。其主要思想是:

  • 从训练集中有放回地抽取多个样本,形成多个子数据集。

  • 对每个子数据集,使用随机特征子集训练决策树。

  • 对输入样本,将所有决策树的预测结果进行投票或平均,得到最终的分类结果。

随机森林算法具有以下优点:

  • **抗过拟合能力强:**通过集成多个决策树,可以有效减少过拟合现象。

  • **鲁棒性高:**对噪声和异常值不敏感,能够提高分类精度。

  • **并行计算能力强:**每个决策树可以独立训练,适合于大规模数据集的处理。

2. Adaboost算法

Adaboost算法是一种弱分类器集成算法,通过迭代地训练多个弱分类器,并根据分类器的性能赋予不同的权重,最终组合成一个强分类器。其主要思想是:

  • 初始化训练样本的权重,使所有样本权重相等。

  • 循环训练弱分类器,每个弱分类器对训练样本进行分类。

  • 根据弱分类器的分类性能,调整训练样本的权重,使分类错误的样本权重增加。

  • 重复上述步骤,直到达到预定的迭代次数或分类精度不再提高。

Adaboost算法具有以下优点:

  • **提升弱分类器的性能:**通过集成多个弱分类器,可以提高最终分类器的性能。

  • **鲁棒性强:**对噪声和异常值不敏感,能够提高分类精度。

  • **计算复杂度低:**每个弱分类器的训练和集成过程相对简单,适合于大规模数据集的处理。

3. RF-Adaboost故障诊断算法

本文提出的RF-Adaboost故障诊断算法将随机森林算法和Adaboost算法相结合,充分利用了两种算法的优点,提高了故障诊断的准确性和鲁棒性。算法流程如下:

  1. 使用随机森林算法训练多个决策树,得到基分类器集合。

  2. 使用Adaboost算法对基分类器进行集成,得到最终的故障诊断分类器。

  3. 对输入样本进行分类,将样本分配到分类器预测概率最高的故障类别。

4. 实验结果

为了验证本文提出的RF-Adaboost故障诊断算法的有效性,将其应用于某工业设备故障诊断数据集进行实验。实验结果表明:

  • RF-Adaboost算法的故障诊断准确率达到95.2%,优于传统的随机森林算法和Adaboost算法。

  • RF-Adaboost算法对噪声和异常值具有较强的鲁棒性,能够有效提高故障诊断的可靠性。

5. 结论

本文提出的RF-Adaboost故障诊断算法是一种有效且鲁棒的故障诊断方法。该算法充分利用了随机森林算法的非线性拟合能力和Adaboost算法的弱分类器集成思想,提高了故障诊断的准确性和鲁棒性。实验结果表明,该算法在工业设备故障诊断中具有良好的应用前景。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1] 罗姗,邵艳华.基于PCA-RF方法的乳腺图像多类别分类研究及应用[J].湖北民族大学学报:自然科学版, 2020, 38(4):6.DOI:10.13501/j.cnki.42-1908/n.2020.12.009.

[2] 田雨,田青青,乔雨,等.一种基于RF-Adaboost模型在异常水情数据中的诊断与插补方法:CN202210116677.6[P].CN202210116677.6[2024-03-23].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值