✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
时序区间预测是时序预测领域的重要任务,旨在预测未来一段时间内的目标变量值范围。近年来,深度学习模型在时序预测任务中取得了显著进展。本文提出了一种基于卷积双向长短期神经网络(CNN-BiLSTM)和核密度估计(KDE)的多变量时序区间预测方法。该方法利用CNN提取时序数据的局部特征,并使用BiLSTM学习时序数据的长期依赖关系。此外,本文还利用KDE对预测分布进行建模,从而获得更准确的区间预测结果。
引言
时序数据广泛存在于各个领域,如金融、能源、医疗等。时序区间预测是指预测未来一段时间内目标变量值范围的任务。与点预测相比,区间预测提供了更全面的信息,可以帮助决策者更好地评估风险和做出决策。
传统的时序区间预测方法主要基于统计模型,如自回归滑动平均(ARIMA)模型和广义自回归条件异方差(GARCH)模型。然而,这些方法对时序数据的非线性性和非平稳性建模能力有限。
方法
本文提出的CNN-BiLSTM-KDE方法包括以下步骤:
-
**数据预处理:**对时序数据进行归一化和标准化处理。
-
**特征提取:**使用一维卷积神经网络(CNN)提取时序数据的局部特征。
-
**序列建模:**使用双向长短期神经网络(BiLSTM)学习时序数据的长期依赖关系。
-
**区间预测:**利用核密度估计(KDE)对预测分布进行建模,并计算目标变量值范围。
本文在多个真实数据集上对CNN-BiLSTM-KDE模型进行了实验评估。实验结果表明,该模型在区间预测任务上取得了优异的性能,优于传统的统计模型和深度学习基线模型。
结论
本文提出了一种基于CNN-BiLSTM-KDE的时序区间预测方法。该方法利用CNN提取局部特征,BiLSTM学习长期依赖关系,KDE对预测分布进行建模。实验结果表明,该方法具有较高的预测精度和鲁棒性,可以有效地预测未来一段时间内的目标变量值范围。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 赵会茹,张士营,赵一航,等.基于自适应噪声完备经验模态分解-样本熵-长短期记忆神经网络和核密度估计的短期电力负荷区间预测[J].现代电力, 2021.DOI:10.19725/j.cnki.1007-2322.2020.0329.
[2] 高晓芝,郭旺,郭英军,等.基于SSA-VMD-LSTM-NKDE的短期风电功率概率预测[J].河北科技大学学报, 2023, 44(4):323-334.DOI:10.7535/hbkd.2023yx04001.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类