针对双指手和墙壁的增量式栅格图搜索算法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 本文旨在研究一种针对双指手和墙壁环境的增量式栅格图搜索算法。在人机交互、虚拟现实等领域,双指手势控制日益普及,而墙壁等物理障碍物的存在对交互的流畅性和自然性提出了挑战。 针对传统栅格图搜索算法在处理此类复杂场景时存在的效率瓶颈,本文提出了一种优化的增量式搜索策略。该策略结合了动态环境下的路径规划需求,考虑了双指手势的几何特性和墙壁的静态约束,旨在实现高效、安全、可靠的路径搜索,从而提升双指手势与虚拟环境的交互体验。

关键词: 双指手势,栅格图,增量式搜索,路径规划,人机交互

1. 引言

随着计算机技术的飞速发展,人机交互 (Human-Computer Interaction, HCI) 正朝着更加自然、直观的方向演进。 手势识别作为一种重要的交互方式,已被广泛应用于虚拟现实 (Virtual Reality, VR)、增强现实 (Augmented Reality, AR)、智能家居等领域。 其中,双指手势因其灵活度和表现力,在诸如缩放、旋转、平移等操作中扮演着关键角色。 然而,在实际应用中,用户通常处于包含墙壁等静态障碍物的环境中,这给双指手势的路径规划带来了挑战。 如果双指在移动过程中与墙壁发生碰撞,不仅会影响交互的流畅性,甚至可能导致用户产生不适感。

传统的路径规划算法,如A*算法、Dijkstra算法等,在静态环境中能够找到最优路径,但在处理动态环境或高分辨率栅格图时,计算复杂度较高,效率较低。 尤其是在双指手势控制中,手的运动轨迹是动态变化的,且需要实时响应用户的操作,因此,传统的静态路径规划算法难以满足实时性的要求。 为了解决这个问题,研究针对双指手势和墙壁环境的增量式栅格图搜索算法具有重要的理论意义和应用价值。

2. 相关工作

现有的路径规划算法可以大致分为基于采样的方法、基于图搜索的方法和基于人工势场的方法。

  • 基于采样的方法: 如快速扩展随机树 (Rapidly-exploring Random Tree, RRT) 算法及其变种,该类算法通过随机采样生成路径,具有较好的全局搜索能力,但难以保证路径的最优性,且在高维空间中效率较低。

  • 基于图搜索的方法: 如A算法及其变种,该类算法通过启发式搜索,能够在栅格图中找到最优路径。 但是,A算法需要在每次搜索前重新构建整个搜索空间,计算量较大,难以适应动态环境。 D算法及其变种,如D Lite算法,是一种增量式搜索算法,它能够在环境发生改变时,只重新计算受影响的部分区域,从而提高了搜索效率。

  • 基于人工势场的方法: 该类算法通过构建人工势场,使智能体在势场的作用下移动。 该方法简单易实现,但容易陷入局部最优解,且难以处理复杂的约束条件。

针对双指手势的路径规划研究相对较少。 一些研究侧重于手势识别算法的优化,提高手势识别的准确性和鲁棒性。 另一些研究则关注于如何利用机器学习算法预测用户的手势轨迹。 然而,很少有研究关注到在包含墙壁等障碍物的环境中,如何为双指手势规划出安全、高效的路径。

3. 算法设计

本文提出的增量式栅格图搜索算法旨在解决双指手势在包含墙壁的栅格地图中运动的路径规划问题。 该算法的核心思想是在D* Lite算法的基础上,结合双指手势的几何特性和墙壁的静态约束,优化搜索过程,提高搜索效率。

3.1 栅格地图表示

首先,我们需要将实际环境转换为栅格地图。 栅格地图将空间划分为离散的网格,每个网格代表一个状态,可以表示障碍物或空闲区域。 对于包含墙壁的场景,我们将墙壁所在的网格设置为障碍物,其他区域设置为空闲区域。 栅格的大小需要根据实际应用场景进行选择,较小的栅格尺寸可以提高路径的精度,但会增加搜索空间的大小,降低搜索效率。

3.2 双指手势的几何建模

双指手势可以用两个点的坐标来表示,分别代表两个手指的位置。 为了确保双指在移动过程中不与墙壁发生碰撞,我们需要考虑双指的几何尺寸。 我们可以将双指近似为一个圆形或椭圆形,圆心或椭圆的中心位于两个手指的中点。 半径或长短轴的长度可以根据实际情况进行调整,以确保双指的安全。

3.3 启发式函数设计

启发式函数用于评估从当前节点到目标节点的估计代价。 一个好的启发式函数可以有效地指导搜索方向,减少搜索空间。 在本文中,我们采用欧几里得距离作为启发式函数,即当前节点到目标节点的直线距离。 为了提高搜索效率,我们也可以采用对角线距离或曼哈顿距离作为启发式函数。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值