✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
水声通信在海洋探测、水下机器人通信等领域有着广泛的应用。正交频分复用调制(OFDM)技术因其抗多径衰落和抗噪声干扰的特性,被广泛应用于水声通信系统中。本文介绍了一种基于 OFDM-QPSK 的水声通信仿真系统,并对系统性能进行了误码率(BER)检测。仿真结果表明,该系统在不同信噪比(SNR)条件下具有良好的 BER 性能。
引言
水声通信是利用水声波在水下进行信息传输的技术。与无线电通信相比,水声通信具有传播距离远、穿透能力强、抗干扰能力强等优点。但是,水声信道存在多径衰落、噪声干扰、时变等特性,给水声通信系统的设计带来了挑战。
OFDM 技术是一种将宽带信道划分为多个子信道的多载波调制技术。每个子信道传输一个正交的子载波信号,从而提高了系统的抗多径衰落能力。同时,OFDM 技术还具有抗噪声干扰的特性,可以有效地改善系统的 BER 性能。
系统仿真
本文设计的 OFDM-QPSK 水声通信仿真系统主要包括以下模块:
-
**数据生成:**生成随机二进制数据序列。
-
**OFDM 调制:**将二进制数据序列调制到 OFDM 符号上。
-
**信道模型:**模拟水声信道的多径衰落和噪声干扰。
-
**OFDM 解调:**对接收到的 OFDM 符号进行解调,恢复二进制数据序列。
-
**误码率计算:**计算解调后的二进制数据序列与原始数据序列之间的误码率。
结论
本文介绍了一种基于 OFDM-QPSK 的水声通信仿真系统,并对系统性能进行了误码率检测。仿真结果表明,该系统在不同信噪比条件下具有良好的 BER 性能。该仿真系统可以为水声通信系统的设计和性能评估提供参考。在 SNR 为 10 dB 时,误码率约为 10^-3。这表明该仿真系统能够有效地模拟水声信道并评估 OFDM-QPSK 调制方案的性能。
📣 部分代码
function [ demod_out ] = demodulation( demod_in)
%UNTITLED3 此处显示有关此函数的摘要
% 此处显示详细说明
d=zeros(4,length(demod_in)); %d是信道值和星座点的距离
m=zeros(1,length(demod_in));
temp=[-1-j,-1+j,1-j,1+j]/sqrt(2);
for i=1:length(demod_in)
for n=1:4
d(n,i)=(abs(demod_in(i)*sqrt(2)-temp(n))).^2; %由信道值,求出该值与星座图中所有点的距离
end
[min_distance,constellation_point]=min(d(:,i)); %排序
m(i)=constellation_point;
end
A=de2bi([0:3],'left-msb'); %写出0到N-1
for i=1:length(demod_in)
DEMOD_OUT(i,:)=A(m(i),:); %最小值对应的星座点序号的二进制即为解调结果
end
demod_out=reshape(DEMOD_OUT',1,length(demod_in)*2);
end
⛳️ 运行结果
🔗 参考文献
[1]张国龙,郑琛瑶.基于 QPSK 调制水声通信系统设计与仿真[J].舰船电子工程, 2015, 35(1):4.DOI:10.3969/j.issn1672-9730.2015.01.019.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类