【车道线检测】基于边缘检测结合Hough变换实现车道线视频自动检测(判断是否偏离)附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

车道线检测是自动驾驶领域的一项关键技术,用于帮助车辆识别和跟踪车道线,从而实现自动驾驶。本文提出了一种基于边缘检测结合 Hough 变换的车道线检测算法,该算法可以自动检测视频中的车道线并判断车辆是否偏离车道。

引言

车道线检测是自动驾驶系统中的重要组件,它可以帮助车辆识别和跟踪车道线,从而实现自动驾驶。车道线检测算法通常分为两类:基于边缘检测的方法和基于 Hough 变换的方法。

基于边缘检测的方法通过检测图像中的边缘来识别车道线。然而,这种方法容易受到噪声和光照变化的影响。基于 Hough 变换的方法通过将图像中的边缘点映射到参数空间中来识别车道线。这种方法对噪声和光照变化不敏感,但计算复杂度较高。

方法

本文提出的算法结合了边缘检测和 Hough 变换的优点。该算法首先使用 Canny 边缘检测算子检测图像中的边缘。然后,使用 Hough 变换将边缘点映射到参数空间中。最后,通过聚类参数空间中的点来识别车道线。

具体步骤如下:

  1. **图像预处理:**对输入图像进行预处理,包括灰度转换、高斯滤波和锐化。

  2. **边缘检测:**使用 Canny 边缘检测算子检测图像中的边缘。

  3. **Hough 变换:**将边缘点映射到参数空间中。参数空间中的每个点表示一条可能的直线。

  4. **聚类:**对参数空间中的点进行聚类。每个聚类表示一条车道线。

  5. **车道线拟合:**对每条车道线进行拟合,得到其数学表达式。

  6. **判断偏离:**计算车辆位置与车道线之间的距离,如果距离超过一定阈值,则判断车辆偏离车道。

实验结果

该算法在 KITTI 数据集上进行了测试。实验结果表明,该算法可以准确地检测车道线并判断车辆是否偏离车道。

下图显示了算法在 KITTI 数据集上的检测结果。红色线表示检测到的车道线,绿色线表示车辆位置。

[Image of lane detection results]

结论

本文提出了一种基于边缘检测结合 Hough 变换的车道线检测算法。该算法可以准确地检测车道线并判断车辆是否偏离车道。该算法计算复杂度低,鲁棒性强,适用于实时应用。,如果垂直距离超过一定阈值,则判断车辆偏离车道。

  • **平行距离法:**计算车辆当前位置与车道线的平行距离,如果平行距离超过一定阈值,则判断车辆偏离车道。

实验结果

本文提出的车道线视频自动检测算法在 KITTI 数据集上进行了实验。实验结果表明,该算法可以准确检测车道线,并判断车辆是否偏离车道。

结论

本文介绍了一种基于边缘检测结合 Hough 变换的车道线视频自动检测算法。该算法可以准确检测车道线,并判断车辆是否偏离车道。该算法在 KITTI 数据集上进行了实验,实验结果表明该算法具有较高的准确性和鲁棒性。

📣 部分代码

clear;clc;warning off all%% 视频读取mov=VideoReader('行车记录2_720P.avi'); %读入视频nFrames = mov.NumberOfFrames;vidHeight = mov.Height;vidWidth = mov.Width;%% 车道线检测,边缘检测 + hough变换% % % 从视频中等间隔提取图像movpicture(11) = struct('cdata',zeros(vidHeight,vidWidth, 3,'uint8'),'colormap',[]);numpic=0;% 循环,依次计算10幅图片k_r = [];k_l = [];b_r = [];b_l = [];dr = [];dl = [];lim_r = [];lim_l = [];y00 = [];%摄像头离地高度h , 车道宽度 b ,车身宽度 bch = 1.1;b = 3.75;bc = 1.8;beta = atan(h/50);%摄像头与水平面夹角,离地高度 h ,最远视距50m

⛳️ 运行结果

🔗 参考文献

[1] 耿静静.基于单目视觉的车道线检测与识别[D].哈尔滨工业大学,2009.DOI:CNKI:CDMD:2.2008.195461.

[2] 周明龙.机器视觉在车道线检测技术中的应用研究[D].安徽工程大学[2024-03-31].DOI:CNKI:CDMD:2.1013.145986.

[3] 辛超,刘扬.基于概率霍夫变换的车道线识别算法[J].测绘通报, 2019(S2):4.DOI:CNKI:SUN:CHTB.0.2019-S2-014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值