✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
车道线检测是自动驾驶领域的一项关键技术,用于帮助车辆识别和跟踪车道线,从而实现自动驾驶。本文提出了一种基于边缘检测结合 Hough 变换的车道线检测算法,该算法可以自动检测视频中的车道线并判断车辆是否偏离车道。
引言
车道线检测是自动驾驶系统中的重要组件,它可以帮助车辆识别和跟踪车道线,从而实现自动驾驶。车道线检测算法通常分为两类:基于边缘检测的方法和基于 Hough 变换的方法。
基于边缘检测的方法通过检测图像中的边缘来识别车道线。然而,这种方法容易受到噪声和光照变化的影响。基于 Hough 变换的方法通过将图像中的边缘点映射到参数空间中来识别车道线。这种方法对噪声和光照变化不敏感,但计算复杂度较高。
方法
本文提出的算法结合了边缘检测和 Hough 变换的优点。该算法首先使用 Canny 边缘检测算子检测图像中的边缘。然后,使用 Hough 变换将边缘点映射到参数空间中。最后,通过聚类参数空间中的点来识别车道线。
具体步骤如下:
-
**图像预处理:**对输入图像进行预处理,包括灰度转换、高斯滤波和锐化。
-
**边缘检测:**使用 Canny 边缘检测算子检测图像中的边缘。
-
**Hough 变换:**将边缘点映射到参数空间中。参数空间中的每个点表示一条可能的直线。
-
**聚类:**对参数空间中的点进行聚类。每个聚类表示一条车道线。
-
**车道线拟合:**对每条车道线进行拟合,得到其数学表达式。
-
**判断偏离:**计算车辆位置与车道线之间的距离,如果距离超过一定阈值,则判断车辆偏离车道。
实验结果
该算法在 KITTI 数据集上进行了测试。实验结果表明,该算法可以准确地检测车道线并判断车辆是否偏离车道。
下图显示了算法在 KITTI 数据集上的检测结果。红色线表示检测到的车道线,绿色线表示车辆位置。
[Image of lane detection results]
结论
本文提出了一种基于边缘检测结合 Hough 变换的车道线检测算法。该算法可以准确地检测车道线并判断车辆是否偏离车道。该算法计算复杂度低,鲁棒性强,适用于实时应用。,如果垂直距离超过一定阈值,则判断车辆偏离车道。
-
**平行距离法:**计算车辆当前位置与车道线的平行距离,如果平行距离超过一定阈值,则判断车辆偏离车道。
实验结果
本文提出的车道线视频自动检测算法在 KITTI 数据集上进行了实验。实验结果表明,该算法可以准确检测车道线,并判断车辆是否偏离车道。
结论
本文介绍了一种基于边缘检测结合 Hough 变换的车道线视频自动检测算法。该算法可以准确检测车道线,并判断车辆是否偏离车道。该算法在 KITTI 数据集上进行了实验,实验结果表明该算法具有较高的准确性和鲁棒性。
📣 部分代码
clear;
clc;
warning off all
%% 视频读取
mov=VideoReader('行车记录2_720P.avi'); %读入视频
nFrames = mov.NumberOfFrames;
vidHeight = mov.Height;
vidWidth = mov.Width;
%% 车道线检测,边缘检测 + hough变换
% % % 从视频中等间隔提取图像
movpicture(11) = struct('cdata',zeros(vidHeight,vidWidth, 3,'uint8'),'colormap',[]);
numpic=0;
% 循环,依次计算10幅图片
k_r = [];k_l = [];
b_r = [];b_l = [];
dr = [];dl = [];
lim_r = [];lim_l = [];
y00 = [];
%摄像头离地高度h , 车道宽度 b ,车身宽度 bc
h = 1.1;b = 3.75;bc = 1.8;
beta = atan(h/50);%摄像头与水平面夹角,离地高度 h ,最远视距50m
⛳️ 运行结果
🔗 参考文献
[1] 耿静静.基于单目视觉的车道线检测与识别[D].哈尔滨工业大学,2009.DOI:CNKI:CDMD:2.2008.195461.
[2] 周明龙.机器视觉在车道线检测技术中的应用研究[D].安徽工程大学[2024-03-31].DOI:CNKI:CDMD:2.1013.145986.
[3] 辛超,刘扬.基于概率霍夫变换的车道线识别算法[J].测绘通报, 2019(S2):4.DOI:CNKI:SUN:CHTB.0.2019-S2-014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类