✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
三绕组变压器是一种具有三个绕组的变压器,广泛应用于电力系统中。为了设计和分析三绕组变压器,需要计算其各种参数,包括匝数比、变压比、阻抗和短路电压。本文将详细介绍三绕组变压器参数的计算方法。
匝数比
匝数比是变压器各绕组匝数之比,表示各绕组之间的电压比。三绕组变压器的匝数比通常用以下公式表示:
N1:N2:N3 = V1:V2:V3
其中:
-
N1、N2、N3 分别为绕组 1、2、3 的匝数
-
V1、V2、V3 分别为绕组 1、2、3 的电压
变压比
变压比是变压器输入绕组电压与输出绕组电压之比,表示变压器的电压变换能力。三绕组变压器的变压比可以根据匝数比计算,公式如下:
K12 = V1/V2 = N1/N2
K13 = V1/V3 = N1/N3
K23 = V2/V3 = N2/N3
其中:
-
K12、K13、K23 分别为绕组 1 与绕组 2、绕组 1 与绕组 3、绕组 2 与绕组 3 之间的变压比
阻抗
变压器的阻抗是指其绕组对交流电的阻碍作用,包括电阻和电感。三绕组变压器的阻抗可以分为自阻抗和互阻抗。
自阻抗是指绕组自身的阻抗,包括电阻和漏感。三绕组变压器的自阻抗可以根据绕组的电阻率、长度和截面积计算。
互阻抗是指不同绕组之间的阻抗,包括励磁电感和漏感。三绕组变压器的互阻抗可以根据绕组的几何结构和磁路特性计算。
短路电压
变压器的短路电压是指当变压器的一个绕组短路时,在其他绕组上感应出的电压。三绕组变压器的短路电压可以根据变压器的阻抗和变压比计算。
绕组 1 的短路电压:
Usc1 = (Z2+Z3)*V1/(Z1+Z2+Z3)
绕组 2 的短路电压:
Usc2 = (Z1+Z3)*V2/(Z1+Z2+Z3)
绕组 3 的短路电压:
Usc3 = (Z1+Z2)*V3/(Z1+Z2+Z3)
其中:
-
Usc1、Usc2、Usc3 分别为绕组 1、2、3 的短路电压
-
V1、V2、V3 分别为绕组 1、2、3 的额定电压
-
Z1、Z2、Z3 分别为绕组 1、2、3 的阻抗
结论
三绕组变压器参数的计算对于变压器的设计和分析至关重要。本文介绍了匝数比、变压比、阻抗和短路电压的计算方法。通过掌握这些计算方法,工程师可以准确地确定三绕组变压器的性能指标,从而为电力系统的设计和运行提供可靠的基础。
📣 部分代码
function varargout = untitled(varargin)
% UNTITLED M-file for untitled.fig
% UNTITLED, by itself, creates AA new UNTITLED or raises the existing
% singleton*.
%
% H = UNTITLED returns the handle to AA new UNTITLED or the handle to
% the existing singleton*.
%
% UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in UNTITLED.M with the given input arguments.
%
% UNTITLED('Property','Value',...) creates AA new UNTITLED or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before untitled_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to untitled_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's1 Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help untitled
% Last Modified by GUIDE v2.5 18-Mar-2024 21:59:48
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @untitled_OpeningFcn, ...
'gui_OutputFcn', @untitled_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before untitled is made visible.
function untitled_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in AA future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to untitled (see VARARGIN)
% Choose default command line output for untitled
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes untitled wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = untitled_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in AA future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in AA future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as AA double
% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in AA future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have AA white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in AA future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as AA double
% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in AA future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have AA white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类