✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 概述
图像配准是指将两幅或多幅图像进行空间对齐,使其在相同的坐标系下进行比较和分析。它在医学图像分析、遥感图像处理、目标识别等领域有着广泛的应用。
2. 互信息
互信息是信息论中衡量两个随机变量之间相关性的指标。它表示两个变量之间包含的共同信息量。在图像配准中,互信息被用来衡量两幅图像之间的相似度。
3. 基于互信息的图像配准方法
基于互信息的图像配准方法主要包括以下步骤:
-
**预处理:**对图像进行预处理,例如灰度化、降噪等。
-
**特征提取:**从图像中提取特征,例如灰度值、纹理特征等。
-
**互信息计算:**计算两幅图像之间特征的互信息。
-
**优化:**使用优化算法,例如梯度下降法、模拟退火算法等,找到使互信息最大的图像配准参数。
4. 算法流程
基于互信息的图像配准算法流程如下:
-
输入两幅待配准图像。
-
对图像进行预处理。
-
从图像中提取特征。
-
计算两幅图像之间特征的互信息。
-
使用优化算法找到使互信息最大的图像配准参数。
-
输出配准后的图像。
5. 优点和缺点
基于互信息的图像配准方法具有以下优点:
-
对图像的灰度变化和噪声不敏感。
-
能够处理大范围的图像变形。
-
计算速度快。
其缺点包括:
-
对图像的特征提取方法依赖性强。
-
容易陷入局部最优解。
6. 应用
基于互信息的图像配准方法在医学图像分析、遥感图像处理、目标识别等领域有着广泛的应用。例如,在医学图像分析中,它可以用于将不同模态的图像进行配准,例如CT图像和MRI图像;在遥感图像处理中,它可以用于将不同时间或不同传感器获取的图像进行配准;在目标识别中,它可以用于将目标图像与模板图像进行配准,从而实现目标识别。
⛳️ 运行结果
🔗 参考文献
[1] 马政德.基于互信息的图像配准并行算法研究与实现[D].国防科学技术大学[2024-04-25].DOI:10.7666/d.y1297971.
[2] 毛鑫,闫立兵.基于RANSAC和互信息的图像配准算法及其硬件实现[J].电光与控制, 2022(6).DOI:10.3969/j.issn.1671-637X.2022.06.015.
[3] 周海芳,杜云飞,杨学军,等.基于互信息的遥感图像区域配准并行算法的研究与实现[J].中国图象图形学报, 2010(1):7.DOI:10.11834/jig.20100128.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类