✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着海上交通日益繁忙,船舶碰撞事故频发,给航运安全和海洋环境带来巨大威胁。为了提高航行安全,国际海事组织(IMO)制定了《国际海上避碰规则》(COLREGS),对船舶在不同情况下的避碰义务和责任进行了明确规定。近年来,随着人工智能技术的发展,自动避碰系统逐渐成为研究热点。本文基于国际海上避碰规则,设计了一种两船自动避让系统,该系统能够根据船舶的航行状态和周围环境信息,自动识别避碰目标并制定避碰策略,从而提高航行安全。
1. 引言
随着海上交通日益繁忙,船舶碰撞事故频发,给航运安全和海洋环境带来巨大威胁。据统计,每年全球发生的船舶碰撞事故约有2000起,造成人员伤亡和财产损失巨大。为了提高航行安全,国际海事组织(IMO)制定了《国际海上避碰规则》(COLREGS),对船舶在不同情况下的避碰义务和责任进行了明确规定。
近年来,随着人工智能技术的发展,自动避碰系统逐渐成为研究热点。自动避碰系统能够根据船舶的航行状态和周围环境信息,自动识别避碰目标并制定避碰策略,从而提高航行安全。目前,国内外已经开发出多种类型的自动避碰系统,但大多数系统只适用于单船避碰,无法实现两船之间的协调避让。
本文基于国际海上避碰规则,设计了一种两船自动避让系统,该系统能够根据船舶的航行状态和周围环境信息,自动识别避碰目标并制定避碰策略,从而提高航行安全。
2. 国际海上避碰规则
国际海上避碰规则(COLREGS)是国际海事组织(IMO)制定的一项重要规则,旨在规范船舶在海上航行时的避碰行为,避免碰撞事故的发生。该规则对船舶在不同情况下的避碰义务和责任进行了明确规定,包括:
-
避碰目标的识别:船舶应及时识别周围环境中的其他船舶,并判断其航行状态和意图。
-
避碰策略的选择:根据避碰目标的航行状态和意图,船舶应选择合适的避碰策略,例如改变航向、改变航速、发出避碰信号等。
-
避碰行动的实施:船舶应根据选择的避碰策略,采取具体的避碰行动,例如转向、减速、停车等。
3. 两船自动避让系统的设计
本系统采用多传感器融合技术,通过雷达、AIS、GPS等传感器获取船舶的航行状态和周围环境信息,并利用人工智能算法对信息进行分析处理,自动识别避碰目标并制定避碰策略。
-
传感器模块:负责采集船舶的航行状态和周围环境信息,包括雷达数据、AIS数据、GPS数据等。
-
数据处理模块:负责对传感器采集的数据进行预处理和融合,提取关键信息。
-
避碰目标识别模块:负责识别周围环境中的其他船舶,并判断其航行状态和意图。
-
避碰策略制定模块:根据避碰目标的航行状态和意图,制定合适的避碰策略,例如改变航向、改变航速、发出避碰信号等。
-
避碰行动执行模块:负责根据避碰策略,控制船舶的转向、减速、停车等行动。
4. 仿真实验
为了验证系统的有效性,我们进行了仿真实验。仿真场景为两艘船舶在交叉航线上相遇,两艘船舶的航行状态和周围环境信息由雷达、AIS、GPS等传感器模拟生成。仿真结果表明,系统能够准确识别避碰目标,并制定合理的避碰策略,有效避免了两船碰撞事故的发生。
5. 结论
本文设计了一种基于国际海上避碰规则的两船自动避让系统,该系统能够根据船舶的航行状态和周围环境信息,自动识别避碰目标并制定避碰策略,从而提高航行安全。仿真实验结果表明,系统能够有效避免两船碰撞事故的发生。
⛳️ 运行结果
🔗 参考文献
[1] 沈海青.基于强化学习的无人船舶避碰导航及控制[D].大连海事大学,2018.
[2] 贺益雄.规则量化解析下船舶自动避碰模型与仿真研究[D].武汉理工大学,2015.DOI:10.7666/d.D01038230.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类