【电力系统】基于粒子群算法PSO配电系统中电容器的最佳位置(降低损耗和提高电压)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本论文针对配电系统中降低损耗和提高电压的需求,研究基于粒子群算法(PSO)确定电容器最佳位置的方法。通过构建以系统有功损耗最小和节点电压偏移最小为目标的多目标优化模型,结合配电系统的约束条件,利用 PSO 算法的全局搜索能力进行求解。经仿真实验表明,该方法能够有效找到电容器的最佳配置方案,显著降低系统损耗,提升节点电压水平,为配电系统的经济高效运行提供了可靠的技术支持。

关键词

粒子群算法;配电系统;电容器;最佳位置;降低损耗;提高电压

一、引言

1.1 研究背景

随着社会经济的快速发展,电力需求日益增长,配电系统作为电力供应的 “最后一公里”,其运行的经济性和可靠性至关重要 。在配电系统中,由于线路阻抗的存在,电能传输过程会产生有功损耗,同时负荷的波动会导致节点电压偏移,影响供电质量 。安装电容器进行无功补偿是降低配电系统损耗、提高电压水平的有效手段之一 。然而,电容器的位置和容量配置直接影响补偿效果,如何确定电容器的最佳位置成为配电系统优化运行的关键问题。

1.2 粒子群算法在电力系统优化中的应用现状

粒子群算法(PSO)是一种基于群体智能的随机优化算法,通过模拟鸟群觅食或鱼群游动的行为,在解空间中搜索最优解 。因其结构简单、收敛速度快、易于实现等优点,PSO 在电力系统优化领域得到广泛应用,如电网规划、机组组合、无功优化等 。在电容器配置问题上,PSO 算法为寻找最佳位置提供了新的途径,但目前的研究仍存在优化目标单一、对复杂配电网络适应性不足等问题,需要进一步深入研究和改进 。

1.3 研究目的与意义

本研究旨在利用粒子群算法的优势,构建适用于配电系统电容器最佳位置确定的优化模型,综合考虑降低损耗和提高电压两个目标,解决传统方法存在的问题。研究成果有助于提高配电系统的运行效率,降低运行成本,保障供电质量,对促进电力系统的可持续发展具有重要的理论和现实意义。

二、粒子群算法原理

2.1 基本概念

粒子群算法将问题的解模拟为搜索空间中的粒子,每个粒子都有自己的位置和速度 。粒子在搜索空间中不断调整自己的位置,以寻找最优解。粒子的位置代表问题的一个潜在解,速度决定了粒子在搜索空间中的移动方向和步长 。

2.2 算法流程

  1. 初始化:随机生成粒子群的初始位置和速度,设定最大迭代次数、学习因子等参数 。每个粒子的位置向量对应电容器在配电系统中的可能安装位置,速度向量表示位置的变化趋势 。
  1. 适应度计算:根据粒子的位置计算其适应度值。在本研究中,适应度函数综合考虑系统有功损耗和节点电压偏移,适应度值越小表示该位置配置电容器的效果越好 。
  1. 更新粒子:每个粒子根据自身的历史最优位置和整个群体的全局最优位置更新自己的速度和位置 。速度更新公式为:

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值