✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
机器人路径规划是机器人学研究中的一个重要课题,其目的是找到机器人从起点到目标点的最优路径。近年来,随着人工智能技术的飞速发展,基于生物启发算法的路径规划方法得到了广泛关注。天牛须算法是一种模拟天牛触角搜索食物的智能算法,具有鲁棒性强、全局搜索能力强等优点。本文将基于天牛须算法,对机器人栅格地图最短路径规划进行研究。
1. 概述
机器人栅格地图是一种将环境信息离散化表示的二维地图,它将环境划分为一个个大小相等的网格,每个网格代表一个特定的状态。机器人最短路径规划是指在栅格地图中找到机器人从起点到目标点的最短路径。
2. 天牛须算法
天牛须算法是一种模拟天牛触角搜索食物的智能算法。天牛触角具有很强的灵活性,可以感知周围环境的变化。天牛在寻找食物时,会不断调整触角的方向,并根据触角的反馈信息来判断食物的位置。
天牛须算法的具体步骤如下:
-
初始化天牛的位置和方向。
-
天牛根据触角的反馈信息调整方向。
-
天牛根据触角的反馈信息判断食物的位置。
-
天牛移动到食物位置。
-
重复步骤2-4,直到找到食物。
3. 基于天牛须算法的机器人路径规划
本文将基于天牛须算法,对机器人栅格地图最短路径规划进行研究。具体步骤如下:
-
将机器人栅格地图转换为天牛须算法的搜索空间。
-
将机器人起点和目标点设置为天牛须算法的起始点和目标点。
-
利用天牛须算法进行搜索,找到机器人从起点到目标点的最短路径。
4. 仿真实验
为了验证基于天牛须算法的机器人路径规划方法的有效性,本文进行了仿真实验。实验结果表明,该方法能够有效地找到机器人从起点到目标点的最短路径。
5. 结论
本文基于天牛须算法,对机器人栅格地图最短路径规划进行了研究。实验结果表明,该方法能够有效地找到机器人从起点到目标点的最短路径。该方法具有鲁棒性强、全局搜索能力强等优点,可以应用于各种机器人路径规划任务中。
📣 部分代码
function x = LocalSearch(x,Xmax,G)
dim = length(x);
fx = fitness(x,G);
for i = 1:dim
newx = x;
newx(i) = randi(Xmax);
newfx = fitness(newx,G);
if newfx < fx
x = newx;
fx = newfx;
end
end
⛳️ 运行结果
🔗 参考文献
[1] 刘琳琳.基于栅格地图环境的机器人路径规划算法[J].机电信息, 2018(30):3.DOI:10.3969/j.issn.1671-0797.2018.30.079.
[2] 余翀,陈雄,邱其文.基于蜂窝地图的步进式机器人路径规划[J].自动化博览, 2011(S2):6.DOI:CNKI:SUN:ZDBN.0.2011-S2-072.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类