✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
肌肉疲劳是肌肉在持续或高强度活动后产生的功能下降现象,广泛存在于运动、康复、人机交互等领域。表面肌电信号 (EMG) 作为反映肌肉活动的重要指标,可用于肌肉疲劳状态的检测和评估。本文将探讨基于时域、频域和熵值分析的表面肌电信号肌肉疲劳状态检测方法。
1. 绪论
肌肉疲劳会影响肌肉的收缩力和协调性,进而影响运动表现和工作效率,甚至可能导致运动损伤。因此,准确评估肌肉疲劳状态具有重要意义。表面肌电信号 (EMG) 是由肌肉活动产生的生物电信号,其特征与肌肉收缩状态密切相关。近年来,基于表面肌电信号的肌肉疲劳检测方法受到广泛关注。
2. 表面肌电信号特征分析
表面肌电信号是一种非平稳的随机信号,其特征参数包括时域特征、频域特征和熵值特征等。
2.1 时域特征
时域特征主要包括均值幅值 (MAV)、均方根值 (RMS)、积分肌电图 (IEMG) 等。这些特征反映了肌电信号的幅值变化情况。
2.2 频域特征
频域特征主要包括中频 (MF)、平均功率频率 (MPF)、频谱重心 (SC) 等。这些特征反映了肌电信号的频率分布情况。
2.3 熵值特征
熵值特征主要包括近似熵 (ApEn)、样本熵 (SampEn)、信息熵 (Shannon Entropy) 等。这些特征反映了肌电信号的复杂性和随机性。
3. 肌肉疲劳状态检测方法
3.1 时域分析
时域分析主要通过比较疲劳状态下和非疲劳状态下的时域特征参数来判断肌肉疲劳状态。例如,疲劳状态下 MAV 和 RMS 值会下降,IEMG 值会上升。
3.2 频域分析
频域分析主要通过比较疲劳状态下和非疲劳状态下的频域特征参数来判断肌肉疲劳状态。例如,疲劳状态下 MF 和 MPF 值会下降,SC 值会上升。
3.3 熵值分析
熵值分析主要通过比较疲劳状态下和非疲劳状态下的熵值特征参数来判断肌肉疲劳状态。例如,疲劳状态下 ApEn 和 SampEn 值会下降,Shannon Entropy 值会上升。
4. 讨论
基于表面肌电信号的肌肉疲劳状态检测方法具有非侵入性、操作简便等优点,在运动、康复、人机交互等领域具有广泛应用前景。然而,该方法也存在一些局限性,例如受信号采集环境和电极放置位置等因素的影响。未来研究需要进一步提高该方法的鲁棒性和准确性。
5. 结论
表面肌电信号是反映肌肉活动的重要指标,可用于肌肉疲劳状态的检测和评估。时域、频域和熵值分析是基于表面肌电信号的肌肉疲劳状态检测方法的主要方法。这些方法各有优劣,需要根据具体应用场景选择合适的分析方法。未来研究需要进一步提高该方法的鲁棒性和准确性,并将其应用于更广泛的领域。
⛳️ 运行结果
🔗 参考文献
[1]王坤,王成俊,罗二平,等.基于幅频联合分析法对肌肉疲劳状态下表面肌电信号时,频域变化规律的研究[J].中国医学物理学杂志, 2010, 27(4):5.DOI:10.3969/j.issn.1005-202X.2010.04.021.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类