✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着智能电网的不断发展,智能能源管理系统在电网需求和配电层面的应用日益重要。本文提出了一种智能家居能源管理系统(HEMS),旨在降低用户日常能源成本,并为电网提供辅助服务。该系统以住宅用户(prosumers)为研究对象,其构成包括光伏(PV)系统、电动汽车(EV)、储能系统(ESS)、灵活负载和关键负载,以及连接上述模块与电网的多端口变换器(MPC)。系统采用粒子群优化(PSO)算法进行最优功率管理,并具备独立运行的能力,即在断开与主电网连接的情况下仍能正常运作。此外,该系统还能够在保证自身运行灵活性的前提下,为电网提供频率支持。本文还提出了一种基于K-means聚类和前馈神经网络的负荷预测系统。通过仿真实验,结果表明该HEMS能够有效地降低住宅用户运行成本,最优地支持系统频率,满足所有受控系统运行要求,并最大限度地保持所有协同电力组件的运行灵活性。
1. 智能家居能源管理系统概述
1.1 系统架构
本文提出的智能家居能源管理系统(HEMS)主要由以下几个部分组成:
-
光伏(PV)系统: 利用太阳能发电,为住宅提供可再生能源。
-
电动汽车(EV): 作为储能设备,可进行充电和放电,并参与电网辅助服务。
-
储能系统(ESS): 用于存储多余的电力,并在需要时释放,提高系统稳定性。
-
灵活负载: 指可根据需求进行调节的负载,例如空调、洗衣机等。
-
关键负载: 指必须持续运行的负载,例如冰箱、照明等。
-
多端口变换器(MPC): 连接上述模块与电网,实现能量的双向流动。
-
能源管理系统(EMS): 负责对整个系统进行控制和优化,实现能源效率最大化。
1.2 系统功能
HEMS的主要功能包括:
-
能源成本优化: 通过对系统中各个组件的功率进行优化调度,降低用户日常能源成本。
-
电网辅助服务: 通过提供频率支持、电压调节等服务,提高电网的稳定性和可靠性。
-
独立运行: 在断开与主电网连接的情况下,HEMS能够利用自身储能系统和可再生能源,保证住宅的基本用电需求。
-
负荷预测: 利用历史数据和机器学习算法预测未来负荷,为系统优化调度提供依据。
2. 优化算法
本文采用粒子群优化(PSO)算法对HEMS进行优化控制。PSO算法是一种基于群体智能的优化算法,通过模拟鸟群觅食行为,在搜索空间中寻找最优解。PSO算法的优势在于:
-
全局搜索能力强: 能够在搜索空间中快速找到全局最优解。
-
易于实现: 算法结构简单,易于编程实现。
-
参数少: 算法参数较少,易于调整。
3. 负荷预测系统
本文提出了一种基于K-means聚类和前馈神经网络的负荷预测系统。该系统首先利用K-means聚类算法对历史负荷数据进行分类,并将不同类型的负荷数据分别输入到前馈神经网络中进行训练。训练完成后,该系统可以根据实时数据预测未来负荷。
4. 仿真实验
为了验证本文提出的HEMS系统性能,进行了仿真实验。仿真结果表明:
-
降低用户运行成本: HEMS能够有效地降低用户日常能源成本,并提高能源利用效率。
-
支持系统频率: HEMS能够在保证自身运行灵活性的前提下,为电网提供频率支持,提高电网稳定性。
-
满足所有运行要求: HEMS能够满足所有受控系统运行要求,并确保系统安全稳定运行。
-
保持运行灵活性: HEMS能够最大限度地保持所有协同电力组件的运行灵活性,提高系统适应性。
5. 结论
本文提出了一种智能家居能源管理系统(HEMS),该系统能够有效地降低用户运行成本,支持电网频率,满足所有运行要求,并保持运行灵活性。仿真实验结果表明,该系统具有良好的性能,为未来智能电网的发展提供了重要的参考价值。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类