✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、引言
条纹图相位信息提取是许多科学和工程领域的重要问题,例如三维形貌测量、全息干涉测量、图像处理等等。传统的相位信息提取方法通常需要一些先验知识,例如条纹频率或条纹方向。然而,在实际应用中,这些信息往往难以获取或不准确,导致相位提取结果出现偏差。
为了克服传统方法的局限性,本文将介绍一种基于希尔伯特黄变换 (Hilbert-Huang Transform,HHT) 的新型条纹图相位信息提取方法。HHT 是一种非线性、自适应的数据分析方法,能够有效地提取信号的瞬时频率和瞬时相位信息,无需任何先验知识。
二、希尔伯特黄变换 (HHT)
HHT 是一种基于经验模态分解 (Empirical Mode Decomposition, EMD) 和希尔伯特变换 (Hilbert Transform) 的数据分析方法。EMD 是一种数据驱动的方法,能够将复杂信号分解为一系列具有不同特征的本征模态函数 (Intrinsic Mode Functions, IMFs)。每个 IMF 代表信号中一个特定的振荡模式,具有有限的局部极值数量,且其上、下包络线之间的平均值为零。
希尔伯特变换将每个 IMF 转换为复信号,从而获得该 IMF 的瞬时频率和瞬时相位。将所有 IMFs 的瞬时相位叠加,即可得到原始信号的总体相位信息。
三、基于 HHT 的条纹图相位信息提取方法
3.1 数据预处理
在进行 HHT 分析之前,需要对条纹图进行预处理。首先,需要对图像进行灰度化和归一化,将灰度值范围缩放到 0 到 1 之间。其次,可以通过一些图像处理方法,例如高斯滤波或中值滤波,去除图像中的噪声。
3.2 经验模态分解 (EMD)
将预处理后的条纹图作为输入,进行 EMD 分解。EMD 算法通过不断迭代寻找信号中的局部极值,并构建上、下包络线,从而将信号分解为一系列 IMF。
3.3 希尔伯特变换
对每个 IMF 进行希尔伯特变换,得到其对应的瞬时频率和瞬时相位。
3.4 相位信息提取
将所有 IMFs 的瞬时相位叠加,即可得到条纹图的总体相位信息。
3.5 相位解包裹
由于相位信息通常在 0 到 2π 之间,需要进行相位解包裹操作,将相位信息扩展到整个实数域,以获得完整的相位信息。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类