【相位信息提取】基于希尔伯特黄变换HHT实现条纹图相位信息提取附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

一、引言

条纹图相位信息提取是许多科学和工程领域的重要问题,例如三维形貌测量、全息干涉测量、图像处理等等。传统的相位信息提取方法通常需要一些先验知识,例如条纹频率或条纹方向。然而,在实际应用中,这些信息往往难以获取或不准确,导致相位提取结果出现偏差。

为了克服传统方法的局限性,本文将介绍一种基于希尔伯特黄变换 (Hilbert-Huang Transform,HHT) 的新型条纹图相位信息提取方法。HHT 是一种非线性、自适应的数据分析方法,能够有效地提取信号的瞬时频率和瞬时相位信息,无需任何先验知识。

二、希尔伯特黄变换 (HHT)

HHT 是一种基于经验模态分解 (Empirical Mode Decomposition, EMD) 和希尔伯特变换 (Hilbert Transform) 的数据分析方法。EMD 是一种数据驱动的方法,能够将复杂信号分解为一系列具有不同特征的本征模态函数 (Intrinsic Mode Functions, IMFs)。每个 IMF 代表信号中一个特定的振荡模式,具有有限的局部极值数量,且其上、下包络线之间的平均值为零。

希尔伯特变换将每个 IMF 转换为复信号,从而获得该 IMF 的瞬时频率和瞬时相位。将所有 IMFs 的瞬时相位叠加,即可得到原始信号的总体相位信息。

三、基于 HHT 的条纹图相位信息提取方法

3.1 数据预处理

在进行 HHT 分析之前,需要对条纹图进行预处理。首先,需要对图像进行灰度化和归一化,将灰度值范围缩放到 0 到 1 之间。其次,可以通过一些图像处理方法,例如高斯滤波或中值滤波,去除图像中的噪声。

3.2 经验模态分解 (EMD)

将预处理后的条纹图作为输入,进行 EMD 分解。EMD 算法通过不断迭代寻找信号中的局部极值,并构建上、下包络线,从而将信号分解为一系列 IMF。

3.3 希尔伯特变换

对每个 IMF 进行希尔伯特变换,得到其对应的瞬时频率和瞬时相位。

3.4 相位信息提取

将所有 IMFs 的瞬时相位叠加,即可得到条纹图的总体相位信息。

3.5 相位解包裹

由于相位信息通常在 0 到 2π 之间,需要进行相位解包裹操作,将相位信息扩展到整个实数域,以获得完整的相位信息。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值