✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
图像引导滤波 (GF) 技术已成功应用于各种图像处理任务中。现有的 GF 方法主要依赖于传统的全窗口框架 (FWF) 或简单的均匀加权聚合策略 (UWA),导致边缘模糊。为了解决这一问题,本文提出了一种基于侧窗的梯度引导滤波 (WSGGF) 方法,该方法基于梯度引导滤波 (GGF)。
方法
WSGGF 对 GGF 中的回归和自适应正则化项进行了改进,引入了基于侧窗的框架 (SWF)。具体来说,我们利用八个侧窗对 GGF 的回归和自适应正则化项进行计算,并采用 L1 范数选择侧窗计算结果。此外,我们用改进的方差加权平均 (VWA) 聚合策略取代了 GGF 中的 UWA 策略。在 VWA 中,每个权重值与对应估计值的倒数成反比。
1. 引言
图像引导滤波 (GF) 是一种常用的图像处理技术,它利用引导图像来约束滤波过程,从而有效地保留图像细节和边缘信息。GF 方法已被广泛应用于各种应用中,如图像去噪、边缘增强、高动态范围图像压缩等。
然而,现有的 GF 方法存在一些不足,主要体现在以下两点:
-
**边缘模糊:**传统 GF 方法采用全窗口框架 (FWF) 或简单的均匀加权聚合策略 (UWA),导致边缘被模糊。
-
**计算效率低:**传统 GF 方法需要对每个像素进行全窗口操作,计算量较大,尤其是对于高分辨率图像。
为了解决这些问题,本文提出了一种基于侧窗的梯度引导滤波 (WSGGF) 方法。WSGGF 基于梯度引导滤波 (GGF),并通过引入侧窗框架 (SWF) 和改进的方差加权平均 (VWA) 聚合策略来提升边缘保持能力和效率。
2. 相关工作
近年来,许多研究人员致力于改善 GF 方法,提高其性能和效率。主要的研究方向包括:
-
**基于窗口改进的 GF 方法:**例如,局部引导滤波 (LGF) 方法采用局部窗口来减少边缘模糊,自适应引导滤波 (AGF) 方法根据图像内容自适应地调整窗口大小。
-
**基于聚合策略改进的 GF 方法:**例如,加权平均引导滤波 (WAGF) 方法采用加权平均策略来更好地利用引导图像的信息。
-
**基于深度学习的 GF 方法:**例如,基于卷积神经网络 (CNN) 的 GF 方法能够学习更复杂的滤波器,提高 GF 的性能。
3. 方法
本文提出的 WSGGF 方法主要包括以下两个步骤:
-
基于侧窗的框架 (SWF):SWF 利用八个侧窗对 GGF 的回归和自适应正则化项进行计算,并采用 L1 范数选择侧窗计算结果。这样可以更好地保持图像细节和边缘信息。
-
**方差加权平均 (VWA) 聚合策略:**VWA 将每个权重值设置为对应估计值的倒数,从而使滤波结果更准确地反映图像内容。
4. 实验结果
为了验证 WSGGF 方法的有效性,我们将其应用于边缘感知平滑、细节增强、高动态范围图像 (HDR) 压缩、图像亮度调整、深度图上采样和单图像去雾等应用中,并与最先进 (SOTA) 方法进行比较。实验结果表明:
-
WSGGF 在边缘保持和抑制视觉伪影方面优于其他方法。
-
WSGGF 的计算效率优于其他基于侧窗的方法。
-
FWSGGF 的速度比 WSGGF 快约四倍,同时保持了优异的性能。
5. 结论
本文提出了一种基于侧窗的梯度引导滤波 (WSGGF) 方法,该方法有效地提高了 GF 的边缘保持能力和效率。WSGGF 和其快速版本 FWSGGF 在各种图像处理任务中都表现出优异的性能,为图像处理领域提供了一种更强大和灵活的工具。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类