✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文提出了一种利用扩展卡尔曼滤波器估计多旋翼无人机模型参数的方法。与基于测试平台的辨识方法不同,该方法利用单一的在线估计过程,整合了多旋翼无人机常见机载传感器可以直接获取的测量数据,从而估计了多旋翼无人机的所有模型参数。
为了开发该方法,本文通过非线性可观测性分析研究了系统的可观测性。首先,介绍了三种类型的多旋翼无人机的动力学模型。然后,为了进行可观测性分析,将状态向量通过将待识别参数视为零动力学状态变量进行扩展。分析结果表明,可以从哪些测量集合中估计模型参数。此外,本文给出了获得可观测性结果必须满足的必要条件。
为了验证该方法,本文进行了大量计算机仿真。仿真结果表明,利用扩展卡尔曼滤波器,并使用直接从机载传感器获取的测量数据进行更新,可以在单一的估计过程中估计多旋翼无人机的所有模型参数。此外,为了更好地验证该方法,本文利用实际飞行日志数据估计了定制四旋翼无人机的模型参数。实验结果表明,该方法可以实际应用。
具体内容如下:
-
引言: 介绍多旋翼无人机模型参数估计的重要性,并阐述本文提出的方法的优势。
-
多旋翼无人机动力学模型: 详细介绍三种典型多旋翼无人机(例如四旋翼、六旋翼、八旋翼)的动力学模型。
-
非线性可观测性分析: 通过对系统进行非线性可观测性分析,确定哪些测量数据可以用来估计模型参数,并给出满足可观测性条件的必要条件。
-
扩展卡尔曼滤波器: 介绍扩展卡尔曼滤波器的原理和算法,以及如何将其应用于多旋翼无人机模型参数估计。
-
仿真验证: 进行大量计算机仿真,验证方法的可行性和准确性,并分析不同因素对估计结果的影响。
-
实验验证: 利用定制四旋翼无人机进行实际飞行实验,验证方法的实际应用效果。
-
结论: 总结本文提出的方法的优势,并展望未来研究方向。
本文的创新点在于:
-
利用扩展卡尔曼滤波器,整合了机载传感器数据,实现了多旋翼无人机模型参数的在线估计。
-
通过非线性可观测性分析,明确了模型参数的可观测性条件,为方法的设计提供了理论依据。
-
通过仿真和实验验证,证明了该方法的有效性和实用性。
本文的贡献在于:
-
为多旋翼无人机的模型辨识提供了一种新方法,并为其实际应用奠定了基础。
-
推动了多旋翼无人机控制、导航和路径规划等方面的研究。
⛳️ 运行结果
🔗 参考文献
EKF-based parameter identification of multi-rotor unmanned aerial vehicles models,R Munguía, S Urzua, A Grau,Sensors 19 (19), 4174.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类