花朵授粉算法( Flower Pollination Algorithm,FPA)是由英国剑桥大学学者Yang于2012年提出的,其基本思想来源于对自然界花朵自花授粉、异花授粉的模拟,是一种新的元启发式群智能随机优化技术 。算法中为了简便计算,假设每个植物仅有一朵花,每朵花只有一个配子,我们可以认为每一个配子都是解空间中的一个候选解。

Yang通过对花朵授粉的研究,抽象出以下四大规则:

1) 生物异花授粉被考虑为算法的全局探测行为,并由传粉者通过Levy飞行的机制实现全局授粉;

2)非生物自花授粉被视作算法的局部开采行为,或称局部授粉;

3)花朵的常性可以被认为是繁衍概率,他与两朵参与授粉花朵的相似性成正比例关系;

4)花朵的全局授粉与局部授粉通过转换概率 p∈[0,1]进行调节。 由于物理上的邻近性和风等因素的影响,在整个授粉活动中,转换概率 p是一个非常重要的参数。 文献[1]中对该参数的试验研究认为,取 p =0.8 更利于算法寻优。

直接上步骤(以多元函数寻优为例):

目标函数 : min g = f(x1,x2,x3,x4...........xd)

设置参量:N(候选解的个数),iter(最大迭代次数),p(转换概率),lamda(Levy飞行参数)

初始化花朵,随机设置一个NXd的矩阵;

计算适应度,即函数值;

获取最优解和最优解得位置;

A循环 1 : 1 :iter

    B循环

        if rand < p

            全局授粉;

        else

            局部授粉;

        end if

        更新新一代的花朵与适应度(函数变量和函数值);

    B循环end

    获取新一代的最优解与最优解位置;

A循环end

全局更新公式:xi(t+1) = xi(t) + L(xi(t) - xbest(t))    L服从Levy分布,具体可以搜索布谷鸟算法。

局部更新公式:xi(t+1) = xi(t) + m(xj(t) - xk(t))    m是服从在[0,1]上均匀分布的随机数。其中,xj和xk是两个不同的个体

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%Flower Pollination Algorithm for Multimodal Optimization (MFPA)
%Jorge G醠vez, Erik Cuevas and Omar Avalos
%%This is the line to execute the code:
%%[mem,bestSol,bestFit,optima,FunctionCalls]=FPA([50 0.25 500 2]);
%FitFunc implements the function to be optimized
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [mem,bestSol,bestFit,optima,FunctionCalls]=FPA(para)
% Default parameters
if nargin<1,
   para=[50 0.25 500];   
end

n=para(1);           % Population size
p=para(2);           % Probabibility switch
N_iter=para (3);  % Number of iterations

phase = 1; %First state
phaseIte= [0.5,0.9,1.01]; %State vector

%Deb Function
d = 1;
Lb = 0;
Ub = 1;
optima =  [.1;.3;.5;.7;.9];


% Initialize the population
for i=1:n,
  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
  Fitness(i)=fitFunc(Sol(i,:));  %%Evaluate fitness function
end

% Initialice the memory
[mem,bestSol,bestFit,worstF] = memUpdate(Sol,Fitness, [], zeros(1,d), 100000000, 0, phase,d,Ub,Lb);

S = Sol;

FunctionCalls = 0;
% Main Loop
for ite = 1 : N_iter,
                    %For each pollen gamete, modify each position acoording
                    %to local or global pollination
                    for i = 1 : n,
                                % Switch probability
                                if rand>p,
                                            
                                            L=Levy(d);
                                            dS=L.*(Sol(i,:)-bestSol);
                                            S(i,:)=Sol(i,:)+dS;
                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);
                                else
                                            epsilon=rand;
                                            % Find random flowers in the neighbourhood
                                            JK=randperm(n);
                                            % As they are random, the first two entries also random
                                            % If the flower are the same or similar species, then
                                            % they can be pollenated, otherwise, no action.
                                            % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)
                                            S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));
                                            % Check if the simple limits/bounds are OK
                                            S(i,:)=simplebounds(S(i,:),Lb,Ub);
                                end
                                Fitness(i)=fitFunc(S(i,:));
                    end
                    %Update the memory
                    [mem,bestSol,bestFit,worstF] = memUpdate(S,Fitness,mem,bestSol,bestFit,worstF,phase,d,Ub,Lb);
                    
                   Sol = get_best_nest(S, mem, p);
                   
                   FunctionCalls = FunctionCalls + n;
                
                   if ite/N_iter > phaseIte(phase)
                        %Next evolutionary process stage
                        phase = phase + 1;
                        [m,~]=size(mem);
                        %Depurate the memory for each stage
                        mem = cleanMemory(mem);
                        FunctionCalls = FunctionCalls + m;
                   end
end

%Plot the solutions (mem) founded by the multimodal framework
x = 0:.01:1;
y = ((sin(5.*pi.*x)).^ 6);
plot(x,y)
hold on
plot(mem(:,1),-mem(:,2),'r*');


% Application of simple constraints
function s=simplebounds(s,Lb,Ub)
  % Apply the lower bound
  ns_tmp=s;
  I=ns_tmp<Lb;
  ns_tmp(I)=Lb(I);
  
  % Apply the upper bounds 
  J=ns_tmp>Ub;
  ns_tmp(J)=Ub(J);
  % Update this new move 
  s=ns_tmp;


% Draw n Levy flight sample
function L=Levy(d)
% Levy exponent and coefficient
% For details, see Chapter 11 of the following book:
% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).
beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
    u=randn(1,d)*sigma;
    v=randn(1,d);
    step=u./abs(v).^(1/beta);
L=0.01*step; 


  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.

【优化求解】花朵授粉智能算法FPA matlab源码_花朵授粉算法