✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 本文提出了一种针对非完整移动机器人(UMR)扰动运动学模型的鲁棒轨迹跟踪算法。该控制设计基于著名的一阶滑模控制方法,并进行了改进以减少抖振效应。该策略考虑了扰动,并允许任何满足非完整约束的平滑参考轨迹,保证了跟踪误差动力学系统渐近收敛到原点。最终的控制输入是一个不连续的切换函数。通过使用QBot2进行的实验验证了该控制方案的可实现性,并将其与该问题中常用的传统控制设计方法进行了比较。
引言:
非完整移动机器人(UMR)在许多领域都得到了广泛的应用,例如工业自动化、物流、服务机器人和移动医疗。然而,由于非完整约束的存在,UMR的轨迹跟踪控制仍然是一个具有挑战性的问题。非完整约束限制了机器人的运动方向,使得传统的控制方法难以应用。此外,外部扰动、模型误差以及噪声的存在也会对控制系统性能产生负面影响。
为了克服这些挑战,本文提出了一种基于一阶滑模控制(FOSMC)的鲁棒轨迹跟踪算法。滑模控制(SMC)是一种非线性控制方法,以其鲁棒性和对参数不确定性及外部扰动的强健性而闻名。FOSMC是一种改进的SMC方法,它通过引入一个线性切换函数来减少抖振,从而提高了控制性能。
算法描述:
本文提出的算法基于以下步骤:
-
模型建立: 首先,建立UMR的扰动运动学模型。该模型考虑了外部扰动和模型误差。
-
滑模面设计: 然后,设计一个滑模面,该滑模面将跟踪误差动力学系统限制在特定的区域内。该滑模面应满足以下条件:
-
可达性: 从初始状态开始,系统能够在有限时间内到达滑模面。
-
稳定性: 当系统到达滑模面后,它能够保持在该滑模面上。
-
-
控制律设计: 最后,设计一个控制律,该控制律能够使系统沿着滑模面运动并最终收敛到参考轨迹。本文提出的控制律基于FOSMC,它通过引入一个线性切换函数来减少抖振。
实验验证:
为了验证算法的可实现性和有效性,本文使用QBot2机器人进行了实验。实验结果表明,本文提出的算法能够有效地跟踪参考轨迹,并对外部扰动和模型误差具有较强的鲁棒性。此外,与传统的PID控制方法相比,本文提出的算法能够更好地抑制抖振,提高了跟踪精度。
结论:
本文提出了一种基于FOSMC的鲁棒轨迹跟踪算法,该算法针对UMR的扰动运动学模型设计。该算法考虑了外部扰动,并允许任何满足非完整约束的平滑参考轨迹。实验结果表明,该算法能够有效地跟踪参考轨迹,并对外部扰动和模型误差具有较强的鲁棒性。未来研究将着重于提高算法的实时性能,并将其应用于更复杂的机器人系统。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类