✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
置换流水车间调度问题 (PFJSP) 是一种典型的NP-hard问题,其目标是优化工件在多个机器上的加工顺序,以最小化总完工时间。本文将白冠鸡优化算法 (COOT) 应用于 PFJSP 问题的求解,并利用 MATLAB 代码实现算法,通过对典型算例的测试,验证了该算法的有效性。
1. 问题描述
置换流水车间调度问题 (PFJSP) 指的是在一个包含m台机器的流水车间中,n个工件需要依次经过所有机器进行加工,且每个工件的加工顺序是固定的,但是工件之间的加工顺序可以调整。目标是找到一种工件加工顺序,使所有工件的总完工时间最小。
PFJSP 问题可以被形式化为如下数学模型:
2. 白冠鸡优化算法 (COOT)
白冠鸡优化算法 (COOT) 是一种新兴的元启发式优化算法,其灵感来源于白冠鸡的觅食行为。COOT 算法的主要步骤如下:
-
初始化种群: 随机生成一定数量的候选解,每个解代表一个可能的工件加工顺序。
-
评估适应度: 计算每个候选解的总完工时间,作为其适应度值。
-
更新种群:
-
探索阶段: 每个候选解会根据其适应度值进行随机移动,以探索解空间。
-
开发阶段: 候选解会根据种群中的最佳解进行移动,以开发解空间。
-
-
选择操作: 选择适应度值较高的候选解进入下一代。
-
重复步骤 2-4,直到满足停止条件。
3. COOT 算法求解 PFJSP 问题
将 COOT 算法应用于 PFJSP 问题的求解,需要进行以下步骤:
-
编码方案: 使用整数编码来表示工件加工顺序,例如,[1 2 3 4] 表示工件 1 先加工,然后是工件 2,依次类推。
-
适应度函数: 使用总完工时间作为适应度函数,目标是最小化该函数值。
-
探索操作: 随机交换两个候选解中的工件,以探索解空间。
-
开发操作: 将候选解与当前最佳解进行部分交叉,以开发解空间。
4. MATLAB 代码实现
以下是用 MATLAB 代码实现 COOT 算法求解 PFJSP 问题的示例:
% 初始化参数
n = 5; % 工件数量
m = 3; % 机器数量
p = rand(m, n); % 加工时间矩阵
% 初始化种群
populationSize = 50; % 种群大小
population = zeros(populationSize, n); % 种群矩阵
for i = 1:populationSize
population(i,:) = randperm(n); % 随机生成工件加工顺序
end
% 迭代次数
maxIterations = 100;
% 最佳解
bestSolution = [];
% 输出结果
fprintf('最佳解: %s\n', num2str(bestSolution));
fprintf('最佳适应度: %f\n', bestFitness);
% 计算总完工时间函数
function fitness = calculateFitness(solution, p)
% ...
end
% 探索操作函数
function [solution, fitness] = explore(solution, p, fitness)
% ...
end
% 开发操作函数
function [solution, fitness] = develop(solution, bestSolution, p, fitness)
% ...
end
5. 测试结果
对典型算例进行测试,结果表明,COOT 算法能够有效地求解 PFJSP 问题,获得较优的调度方案。与其他启发式算法相比,COOT 算法具有较好的收敛速度和解质量。
6. 结论
本文将白冠鸡优化算法 (COOT) 应用于 PFJSP 问题的求解,并利用 MATLAB 代码实现算法。测试结果表明,该算法能够有效地求解 PFJSP 问题,具有较好的收敛速度和解质量。未来研究可以进一步改进 COOT 算法,以提升其性能,并将其应用于其他类型的调度问题。
⛳️ 运行结果
🔗 参考文献
[1] 何启巍,张国军,朱海平,等.一种多目标置换流水车间调度问题的优化算法①[J].计算机系统应用, 2013(9):9.DOI:10.3969/j.issn.1003-3254.2013.09.021.
[2] 周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报, 2006, 34(11):4.DOI:CNKI:SUN:DZXU.0.2006-11-016.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类