✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
分布式置换流水车间调度问题 (Distributed Permutation Flow Shop Scheduling Problem, DPFSP) 是一类重要的车间调度问题,其涉及多个流水车间并行处理任务,且每个任务需要在不同的流水车间进行加工,同时每个车间内的工序顺序需要进行排列。由于其涉及多个车间的协调和工序的排列组合,DPFSP 问题具有高度的复杂性,传统的优化方法难以有效地解决。近年来,随着元启发式算法的不断发展,基于元启发式算法求解 DPFSP 问题成为研究热点。
本文将基于北方苍鹰优化算法 (Northern Goshawk Optimizer, NGO) 提出一种求解 DPFSP 问题的算法,并提供相应的Matlab代码。NGO 算法是一种新型的群体智能优化算法,它模拟了北方苍鹰觅食的行为,具有较强的全局搜索能力和局部搜索能力,能够有效地解决复杂优化问题。
2. DPFSP 问题描述
DPFSP 问题可以描述如下:
假设有 𝑚m 个流水车间,每个车间有 𝑛n 道工序,需要加工 𝐽J 个任务。每个任务需要在不同的车间进行加工,且每个车间内的工序顺序需要进行排列。每个任务在每个车间上的加工时间已知,目标是找到一种任务分配和工序排列方案,使得所有任务的完成时间最小。
符号说明:
-
𝑚m: 流水车间的数量。
-
𝑛n: 每个流水车间的工序数量。
-
𝐽J: 任务的数量。
-
𝑝𝑖𝑗𝑘pijk: 任务 𝑗j 在车间 𝑖i 的第 𝑘k 道工序上的加工时间。
-
𝐶𝑗Cj: 任务 𝑗j 的完成时间。
目标函数:
min max_{j=1}^{J} C_j
约束条件:
-
每个任务必须在所有车间上完成加工。
-
每个车间内的工序必须按照指定的顺序进行。
3. 北方苍鹰优化算法 (NGO)
NGO 算法是一种模拟北方苍鹰觅食行为的群体智能优化算法。算法主要包含三个阶段:
3.1 探索阶段
在探索阶段,苍鹰根据自身经验和环境信息进行随机搜索,以扩大搜索范围,寻找潜在的最佳解。
3.2 攻击阶段
在攻击阶段,苍鹰通过观察猎物的运动轨迹和自身经验,不断调整自身位置,逐渐靠近目标猎物。
3.3 捕获阶段
在捕获阶段,苍鹰会根据自身状态和猎物的位置,选择最佳策略进行攻击,最终捕获猎物。
3.4 NGO 算法流程
-
初始化苍鹰种群,并随机生成初始位置。
-
计算每个苍鹰的适应度值。
-
进入迭代循环:
-
选择适应度值最高的苍鹰作为当前最佳解。
-
根据探索阶段的规则进行搜索,更新苍鹰的位置。
-
根据攻击阶段的规则进行搜索,更新苍鹰的位置。
-
根据捕获阶段的规则进行攻击,更新苍鹰的位置。
-
更新每个苍鹰的适应度值。
-
-
判断是否满足终止条件,如果满足则停止迭代,输出最佳解,否则返回步骤 3。
4. 基于 NGO 算法的 DPFSP 问题求解
4.1 编码方案
本文采用染色体编码方案,将每个任务在所有车间的加工顺序编码到一个染色体中,例如:
染色体:[1, 3, 2, 5, 4]
表示任务 1 在第一个车间加工,任务 3 在第二个车间加工,依次类推。
4.2 适应度函数
本文采用所有任务的完成时间最大值作为适应度函数,即:
f(x) = max_{j=1}^{J} C_j
其中,𝑥x 表示染色体,𝐶𝑗Cj 表示任务 𝑗j 的完成时间。
4.3 NGO 算法参数设置
-
种群规模:𝑁N
-
迭代次数:𝑇T
-
探索阶段参数:𝑝𝑒pe
-
攻击阶段参数:𝑝𝑎pa
-
捕获阶段参数:𝑝𝑐pc
4.4 算法流程
-
初始化 NGO 算法参数,并随机生成 𝑁N 个染色体。
-
计算每个染色体的适应度值。
-
进入迭代循环:
-
选择适应度值最小的染色体作为当前最佳解。
-
根据 NGO 算法的探索阶段、攻击阶段和捕获阶段的规则更新每个染色体的位置。
-
计算每个染色体的适应度值。
-
-
判断是否满足终止条件,如果满足则停止迭代,输出最佳解,否则返回步骤 3。
5. Matlab 代码实现
% 捕获阶段
if rand < pc
population(i, :) = catch(population(i, :), best_solution);
end
end
end
% 输出最佳解
disp('最佳解:');
disp(best_solution);
disp('目标函数值:');
disp(calculate_fitness(best_solution, p, m, n, J));
% 计算适应度值函数
function fitness = calculate_fitness(chromosome, p, m, n, J)
% 计算任务完成时间
C = zeros(1, J);
for j = 1:J
for i = 1:m
k = chromosome(j);
C(j) = C(j) + p(i, k, j);
end
end
% 返回适应度值
fitness = max(C);
end
% 探索阶段
function new_chromosome = explore(chromosome)
% 随机交换两个任务的加工顺序
index1 = randi(J);
index2 = randi(J);
new_chromosome = chromosome;
temp = new_chromosome(index1);
new_chromosome(index1) = new_chromosome(index2);
new_chromosome(index2) = temp;
end
% 攻击阶段
function new_chromosome = attack(chromosome, best_solution)
% 随机选择一个任务,并将其与最佳解中的对应任务进行交换
index = randi(J);
new_chromosome = chromosome;
new_chromosome(index) = best_solution(index);
end
% 捕获阶段
function new_chromosome = catch(chromosome, best_solution)
% 随机选择两个任务,并将其与最佳解中的对应任务进行交换
index1 = randi(J);
index2 = randi(J);
new_chromosome = chromosome;
temp1 = new_chromosome(index1);
temp2 = new_chromosome(index2);
new_chromosome(index1) = best_solution(index1);
new_chromosome(index2) = best_solution(index2);
end
6. 总结
本文介绍了一种基于 NGO 算法求解 DPFSP 问题的算法,并提供了相应的 Matlab 代码。该算法能够有效地解决 DPFSP 问题,并取得较好的优化效果。该算法可以进一步改进,例如,可以根据不同的问题特点调整算法参数,并引入其他优化策略,以提高算法性能。
⛳️ 运行结果
🔗 参考文献
[1] 连戈,朱荣,钱斌,等.超启发式人工蜂群算法求解多场景鲁棒分布式置换流水车间调度问题[J].控制理论与应用, 2023, 40(4):713-723.
[2] 王永.分布式置换流水车间调度问题研究概述[J].机电信息, 2016(24):2.DOI:10.3969/j.issn.1671-0797.2016.24.087.
[3] 李泽楷.混合L-SHADE算法及其在分布式车间调度问题中的应用研究[D].兰州理工大学,2020.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类