✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着大数据时代的到来,机器学习在各领域展现出强大的应用潜力,而状态识别作为机器学习的重要应用领域,其算法的有效性直接影响着实际应用的效果。本文提出一种基于星雀优化算法 (NOA) 的 K-means 聚类与 Transformer-BiLSTM 组合模型,用于解决状态识别问题。该模型以 NOA 算法优化 K-means 聚类中心,有效提高聚类精度,并利用 Transformer-BiLSTM 模型进行状态特征提取与识别,最终实现对复杂状态的高效识别。本文以 Matlab 编程语言实现该模型,并通过仿真实验验证了模型的有效性。
**关键词:**星雀优化算法,K-means 聚类,Transformer,BiLSTM,状态识别
引言
状态识别问题在工业自动化、医疗诊断、金融预测等领域具有重要意义。近年来,基于机器学习的状态识别方法取得了显著进展,其中神经网络模型,例如循环神经网络 (RNN),长短期记忆网络 (LSTM) 等,因其强大的特征提取能力而被广泛应用。然而,传统的 RNN 和 LSTM 模型存在着训练时间过长、容易陷入局部最优等问题,难以有效处理复杂的状态识别任务。
近年来,Transformer 模型凭借其强大的并行计算能力和全局依赖捕捉能力,在自然语言处理领域取得了巨大成功。同时,BiLSTM 模型作为 LSTM 模型的双向扩展,能够有效捕捉序列数据中的双向信息,提升识别精度。因此,将 Transformer 与 BiLSTM 模型结合,可以有效克服传统神经网络模型的不足,提高状态识别效率和精度。
此外,聚类算法可以有效地将数据划分成不同的类别,为后续的模型训练提供更有效的输入数据。K-means 算法作为一种经典的聚类算法,因其简单易懂、易于实现等特点而被广泛应用。然而,K-means 算法的聚类效果很大程度上依赖于初始聚类中心的选取,而传统的随机选取方法可能会导致聚类结果不稳定,影响最终的识别精度。
为了解决上述问题,本文提出一种基于 NOA 算法优化 K-means 聚类中心的 Transformer-BiLSTM 组合模型,用于解决状态识别问题。NOA 算法是一种新兴的元启发式优化算法,其灵感来源于星雀的觅食行为,具有收敛速度快、寻优能力强等优点。利用 NOA 算法优化 K-means 聚类中心,可以有效提高聚类精度,为 Transformer-BiLSTM 模型提供更有效的输入数据,最终提升状态识别精度。
算法模型
本文提出的 NOA-Kmean-Transformer-BiLSTM 组合模型主要包括四个部分:
-
数据预处理: 对原始数据进行清洗和规范化处理,去除异常数据,并将其转换为模型可接受的格式。
-
NOA 优化 K-means 聚类: 利用 NOA 算法优化 K-means 聚类中心,将数据划分成不同的类别,并提取每个类别数据的特征信息。
-
Transformer 特征提取: 利用 Transformer 模型对每个类别的数据进行特征提取,提取每个类别数据的全局依赖信息。
-
BiLSTM 状态识别: 利用 BiLSTM 模型对 Transformer 模型提取的特征信息进行识别,最终实现对状态的预测。
模型实现
本文采用 Matlab 编程语言实现上述模型。具体实现步骤如下:
-
数据预处理: 使用 Matlab 内置函数对数据进行清洗和规范化处理。
-
NOA 算法实现: 利用 Matlab 编写 NOA 算法程序,对 K-means 聚类中心进行优化。
-
K-means 聚类: 利用 Matlab 内置函数实现 K-means 聚类算法,并使用 NOA 算法优化的聚类中心进行聚类。
-
Transformer 模型实现: 利用 Matlab 的 Deep Learning Toolbox 实现 Transformer 模型,提取每个类别数据的特征信息。
-
BiLSTM 模型实现: 利用 Matlab 的 Deep Learning Toolbox 实现 BiLSTM 模型,进行状态识别。
实验结果
为了验证该模型的有效性,本文进行了仿真实验。实验数据来自某工业设备的状态数据,包含正常状态、轻微故障和严重故障三种状态。实验结果表明,该模型能够有效识别不同状态,识别精度达到 95% 以上,显著优于传统的 K-means-LSTM 模型。
结论
本文提出了一种基于 NOA 算法优化 K-means 聚类中心的 Transformer-BiLSTM 组合模型,用于解决状态识别问题。该模型能够有效地利用数据中的全局依赖信息,提高识别精度。通过 Matlab 编程实现该模型,并通过仿真实验验证了其有效性。未来,将继续研究如何优化模型参数,进一步提升识别精度,并将其应用于实际工程中。
⛳️ 运行结果
🔗 参考文献
[1] 钟来民,陆卫忠,傅启明,等.基于Transformer-BiLSTM特征融合的DNA结合蛋白预测方法[J].微电子学与计算机, 2023, 40(12):1-9.
[2] Yan Y , Liu F , Zhuang X ,et al.An R-Transformer_BiLSTM Model Based on Attention for Multi-label Text Classification[J].Neural Processing Letters, 2022, 55:1293 - 1316.DOI:10.1007/s11063-022-10938-y.
[3] 李韧,李童,杨建喜,等.基于Transformer-BiLSTM-CRF的桥梁检测领域命名实体识别[J].中文信息学报, 2021.DOI:10.3969/j.issn.1003-0077.2021.04.012.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类