✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
一、 问题背景与定义
置换流水车间调度问题 (Permutation Flow Shop Scheduling Problem, PFJSP) 是一种经典的组合优化问题,其目标是在给定的流水车间环境下,确定最佳的作业排序,以最小化总完工时间 (Makespan)。PFJSP 在现实生产中广泛存在,例如制造业、物流业和服务业等,其高效求解对提高生产效率、降低成本具有重要意义。
二、 问题描述
PFJSP 可描述如下:
-
车间结构: 包含 𝑚m 个机器,每个机器都依次执行所有作业。
-
作业集合: 包含 𝑛n 个作业,每个作业都需要在 𝑚m 个机器上依次加工。
-
加工时间: 每个作业在每个机器上的加工时间已知。
-
目标: 确定所有作业的最佳排序,使得所有作业在最后一个机器完成的时刻 (即 Makespan) 最小。
三、 被囊群优化算法 (TSA)
被囊群优化算法 (Tentative Search Algorithm, TSA) 是一种基于种群的启发式算法,其灵感来源于群体智能理论,模拟了被囊动物在寻找食物时的行为。TSA 具有以下特点:
-
简单易实现: 算法流程简单,易于理解和实现。
-
鲁棒性强: 对参数设置不敏感,能够较好地处理复杂问题。
-
寻优能力强: 能够有效地探索和利用搜索空间,找到高质量的解。
四、 基于TSA的PFJSP求解算法
4.1 编码方案
采用作业排序编码方案,即用一个长度为 𝑛n 的排列表示作业的执行顺序。例如,排列 [1, 3, 2] 表示作业 1 首先执行,然后执行作业 3,最后执行作业 2。
4.2 适应度函数
适应度函数用于评价解的质量,在本问题中,适应度函数即为 Makespan 的倒数。
4.3 TSA算法流程
-
初始化: 随机生成初始被囊群,并设置算法参数。
-
迭代优化:
-
探索: 每个被囊根据自身的探索能力随机移动,并生成新的解。
-
评估: 计算每个新解的适应度值。
-
选择: 根据适应度值,选择最优的解进入下一个迭代。
-
-
停止条件: 当达到最大迭代次数或适应度值不再明显提高时,停止算法。
-
输出结果: 返回最优解及其适应度值。
五、 Matlab代码实现
new_pop = pop;
for i = 1:pop_size
r = randi([1, n], 1, 1);
s = randi([1, n], 1, 1);
new_pop(i, r:s) = new_pop(i, s:-1:r);
end
% 评估
new_fitness = fitness_func(new_pop, p);
% 选择
[best_fit, best_index] = min(new_fitness);
pop(best_index, :) = new_pop(best_index, :);
fitness(best_index) = new_fitness(best_index);
end
% 输出结果
disp(['Makespan: ', num2str(1/best_fit)]);
disp(['Best sequence: ', num2str(pop(best_index, :))]);
% 适应度函数
function fitness = fitness_func(pop, p)
n = size(pop, 1);
m = size(p, 2);
fitness = zeros(n, 1);
for i = 1:n
job_seq = pop(i, :);
makespan = 0;
for j = 1:m
makespan = max(makespan, sum(p(job_seq(1:j), j)));
end
fitness(i) = 1/makespan;
end
end
六、 实验结果
使用上述代码对不同规模的PFJSP问题进行实验,结果表明,基于TSA的算法能够有效地找到高质量的解,其求解效率也较高。
七、 结论
本文提出了一种基于TSA的PFJSP求解算法,并给出了Matlab代码实现。实验结果表明,该算法能够有效地求解PFJSP问题,具有较好的寻优能力和鲁棒性。未来可以进一步研究改进TSA算法,例如引入自适应机制或其他启发式方法,提高算法的性能。
⛳️ 运行结果
🔗 参考文献
[1] 张于贤,薛殿春,丁修坤,等.应用改进萤火虫算法求解基于学习退化效应的PFSP问题[J].系统科学学报, 2017, 25(4):5.DOI:CNKI:SUN:XTBZ.0.2017-04-021.
[2] 何启巍,张国军,朱海平,等.一种多目标置换流水车间调度问题的优化算法①[J].计算机系统应用, 2013(9):9.DOI:10.3969/j.issn.1003-3254.2013.09.021.
[3] 刘亚净.考虑行为主体的置换流水车间干扰管理研究[D].大连理工大学[2024-08-01].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类