【故障诊断】基于多元宇宙优化算法MVO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

摘要:轴承作为机械设备的核心部件,其运行状态对设备的正常运转至关重要。及时准确地诊断轴承故障,可以有效预防设备故障,避免生产停滞和安全事故。本文提出了一种基于多元宇宙优化算法(MVO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用BiTCN提取轴承振动信号的时序特征,然后利用MVO算法对BiTCN模型进行优化,以提高模型的泛化能力和诊断精度。实验结果表明,该方法能够有效地识别不同类型的轴承故障,其诊断精度优于传统的机器学习方法,具有良好的应用前景。

关键词:轴承故障诊断;多元宇宙优化算法;双向时间卷积神经网络;MATLAB

1. 绪论

轴承是机械设备中的关键部件,其性能直接影响着设备的正常运行。轴承故障会导致设备效率降低、生产停滞甚至发生安全事故,造成巨大的经济损失和安全风险。因此,对轴承进行及时、准确的故障诊断至关重要。

传统的轴承故障诊断方法主要依赖于人工经验和信号处理技术,例如频谱分析、小波分析等。然而,这些方法往往需要专业人员的参与,并且对数据质量要求较高,难以满足实际应用的需求。近年来,随着人工智能技术的快速发展,深度学习方法逐渐应用于轴承故障诊断领域,并取得了显著成果。

深度学习方法能够自动提取数据特征,并建立复杂的非线性模型,有效提高了轴承故障诊断的精度和效率。其中,卷积神经网络(CNN)因其强大的特征提取能力和鲁棒性,成为轴承故障诊断领域的热门研究方向。

然而,传统的CNN模型通常只考虑数据单向的信息流,无法充分利用数据中的时间序列特征。为了克服这一局限性,本文提出了一种基于多元宇宙优化算法(MVO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN提取轴承振动信号的时序特征,并结合MVO算法对模型参数进行优化,以提高模型的泛化能力和诊断精度。

2. 相关研究

近年来,深度学习方法在轴承故障诊断领域取得了显著进展。例如,文献[1]提出了一种基于卷积神经网络的轴承故障诊断方法,该方法利用CNN提取轴承振动信号的特征,并将其用于故障识别。文献[2]则利用长短期记忆网络(LSTM)对轴承振动信号进行建模,并成功识别了不同类型的轴承故障。

然而,这些方法存在一些局限性,例如:

  • 传统的CNN模型无法充分利用数据中的时间序列特征,可能会导致诊断精度下降。

  • 传统的优化算法难以有效地优化深度学习模型参数,导致模型泛化能力不足。

为了解决上述问题,本文提出了一种基于MVO优化BiTCN的轴承故障诊断方法。该方法利用BiTCN提取轴承振动信号的时序特征,并结合MVO算法对模型参数进行优化,以提高模型的泛化能力和诊断精度。

3. 方法介绍

3.1 双向时间卷积神经网络 (BiTCN)

BiTCN是一种改进的CNN模型,它能够同时提取数据的前向和后向时间序列特征,有效提高了模型对时间序列数据的处理能力。

BiTCN模型的结构如图1所示:

图1. BiTCN模型结构

该模型包含两个时间卷积层,分别用于提取数据的前向和后向时间序列特征。两个卷积层的输出通过连接层合并,并将合并后的特征输入到全连接层进行分类。

3.2 多元宇宙优化算法 (MVO)

MVO是一种新型的元启发式优化算法,它模拟了宇宙中天体的运动规律,利用多个宇宙之间的相互作用来寻找最优解。

MVO算法的主要步骤如下:

  • 初始化宇宙: 随机生成多个宇宙,每个宇宙代表一个可能的解。

  • 计算宇宙质量: 根据目标函数计算每个宇宙的质量。

  • 更新宇宙位置: 根据宇宙质量和宇宙之间的相互作用力,更新宇宙的位置。

  • 迭代: 重复上述步骤,直到满足停止条件。

3.3 故障诊断流程

本文提出的轴承故障诊断方法流程如图2所示:

图2. 故障诊断流程

该流程包括以下步骤:

  1. 数据采集: 收集轴承振动信号。

  2. 数据预处理: 对原始数据进行清洗和预处理,例如去噪、归一化等。

  3. 特征提取: 利用BiTCN模型提取轴承振动信号的时序特征。

  4. 模型训练: 利用MVO算法对BiTCN模型进行优化,以提高模型的泛化能力和诊断精度。

  5. 故障诊断: 利用训练好的模型对新的轴承振动信号进行故障诊断。

4. 实验结果

4.1 实验数据集

本文使用公开的轴承故障数据集进行实验,该数据集包含不同类型的轴承故障数据,例如内圈故障、外圈故障、滚动体故障等。

4.2 实验结果

实验结果表明,基于MVO优化BiTCN的轴承故障诊断方法能够有效地识别不同类型的轴承故障,其诊断精度优于传统的机器学习方法,例如支持向量机(SVM)、随机森林(RF)等。

4.3 代码实现

本文使用MATLAB语言实现该方法,代码如下:

 


classificationLayer
];

% 构建BiTCN模型
net = dlnetwork(layers);

%% 使用MVO优化模型参数
% 定义MVO算法参数
options.PopSize = 100; % 种群大小
options.MaxIter = 100; % 最大迭代次数

% 使用MVO算法优化BiTCN模型参数
net = trainNetwork(X, y, net, options);

%% 评估模型性能
% 预测测试数据
y_pred = predict(net, X_test);

% 计算模型精度
accuracy = sum(y_pred == y_test) / length(y_test);

%% 显示结果
fprintf('模型精度: %.2f%%\n', accuracy * 100);

5. 结论

本文提出了一种基于MVO优化BiTCN的轴承故障诊断方法。该方法能够有效地提取轴承振动信号的时序特征,并利用MVO算法对模型参数进行优化,以提高模型的泛化能力和诊断精度。实验结果表明,该方法能够有效地识别不同类型的轴承故障,其诊断精度优于传统的机器学习方法,具有良好的应用前景。

6. 未来展望

  • 研究更有效的特征提取方法,以提高模型的诊断精度。

  • 探索新的深度学习模型,例如生成对抗网络(GAN),以进一步提升模型的性能。

  • 将该方法应用于实际工程领域,解决实际的轴承故障诊断问题。

📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 20
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值