【数据分析】基于代理的二维网格扩散仿真附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文将深入探讨一个基于代理的模型,用于模拟新冠肺炎在二维网格环境中的传播,重点关注代理移动速度对传播的影响。该模型在 MATLAB 环境中实现,并通过可视化工具展示了疫情传播过程和关键指标的动态变化。

模型描述:

该模型将一个 10x10 的二维网格作为模拟环境,初始设置 500 个代理,随机分布在网格中。每个代理被赋予两种健康状态:易感或感染。模拟运行 115 天,每个时间步长代表一个小时。代理在网格中随机移动,当两个代理处于同一网格位置时,易感代理会被感染的概率由模型参数定义。

感染代理在被隔离之前可以保持移动状态 6 天,之后被隔离在当前位置。隔离结束后,他们将重新进入人群,获得免疫状态,但仍存在 0.0001 的概率会继续传播病毒。

模型可视化界面包含两个部分:左侧是一个 10x10 的网格图,用不同颜色点表示代理的健康状态;右侧是一个线图,展示感染代理比例随时间的变化,并用一个条形图指示当前总代理数量。

本项目使用基于代理的模型来模拟 COVID-19 在二维网格中传播,该网格代表一个封闭环境。模型从初始的 500 个代理开始,这些代理随机分布在网格中。每个代理以恒定的速度随机移动,并在每个时间步长略微改变其方向,模拟个体漫游的行为。当代理占据相同的网格单元时,它们会相互作用,感染传播的概率由单元格中是否存在感染者或隔离者决定。

感染者在六天内继续自由地在网格中移动,在此无症状阶段可能传播病毒。在此期间结束后,代理进入隔离状态,在网格中保持静止,传播病毒的概率为 0.0001。完成隔离期后,代理获得免疫力,不再能感染或传播病毒。

为了简化模型,假设所有代理的年龄和健康状况相同。这简化了模型,并专注于了解病毒在同质人群中的传播。尽管这种假设可能无法反映现实世界的人口统计数据,但它允许更清楚地分析疾病动态,而无需引入与年龄相关行为或易感性相关的额外变量。

该模型在指定的时间步长内运行,代表小时,以模拟疫情随时间的进展。诸如代理速度、感染概率、感染持续时间和隔离期等关键参数可以进行调整,以探索不同的场景及其对病毒传播的影响。在模拟过程中,收集数据以跟踪每个时间步长易感、感染、隔离和免疫代理的数量。这些数据用于可视化流行病的动态,并了解不同的干预措施和参数如何影响疫情的轨迹。

模拟输出图表显示了不同时间点的代理空间分布,以及模拟期间每个状态类别(易感、感染、隔离和免疫)代理数量的趋势。这些可视化提供了对疾病传播方式以及干预措施如何改变其进程的见解。

模型优势:

  • 直观可视化: 模型提供了直观的可视化界面,方便用户观察疫情传播过程和关键指标的变化,增强模型的理解和分析能力。

  • 参数可调性: 模型允许用户调整关键参数,例如代理初始数量、感染持续时间、感染概率等,以便模拟不同场景和条件下的疫情传播。

  • 速度影响分析: 模型重点关注代理移动速度的影响,为研究不同移动行为对疫情传播的影响提供了一个有效的工具。

未来方向:

  • 更复杂的代理行为: 未来可以将代理的行为模式设计得更加复杂,例如考虑代理的个人健康状况、社交关系、出行行为等因素,从而更真实地模拟疫情传播过程。

  • 更复杂的传播机制: 模型可以进一步扩展,加入更复杂的传播机制,例如考虑不同人群之间的传播差异、潜伏期、症状表现等因素。

  • 空间异质性: 模型可以考虑网格环境的空间异质性,例如不同区域的人口密度、社会流动性等因素,从而更精准地模拟疫情传播。

总之,该基于代理的模型为研究新冠肺炎在二维网格环境中的传播提供了有效的模拟工具。通过调整代理移动速度等参数,我们可以观察和分析速度对疫情传播的影响,为疫情防控策略的制定提供参考。未来,我们可以继续完善模型,加入更复杂的代理行为和传播机制,以更准确地模拟现实世界的疫情传播情况。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值