✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
分布式置换流水车间调度问题(DPFSP)是一个典型的NP-hard问题,旨在优化多个流水车间并行处理的任务调度,以最小化总加工时间。近年来,元启发式算法如海鸥优化算法(SOA)因其良好的全局搜索能力和鲁棒性,在解决复杂优化问题方面表现出显著优势。本文将介绍基于SOA算法求解DPFSP问题的方案,并提供相应的Matlab代码实现。
1. 引言
分布式置换流水车间调度问题(DPFSP)是制造业中常见的优化问题,其目标是在多个流水车间中对一系列的任务进行优化调度,以最小化总加工时间。DPFSP问题具有高度的复杂性和非线性,传统的优化方法难以找到最优解。
海鸥优化算法(SOA)是一种基于自然界海鸥觅食行为的元启发式算法,其灵感来源于海鸥在觅食过程中通过观察和学习其他海鸥的行为来寻找食物的行为。SOA算法具有全局搜索能力强、参数设置简单、鲁棒性好等特点,近年来在解决复杂优化问题方面得到了广泛应用。
2. DPFSP问题描述
DPFSP问题可以描述如下:
-
n 个任务需要在 m 个流水车间中进行加工。
-
每个任务 i 必须在 m 个流水车间中依次加工,其加工顺序是固定的。
-
每个流水车间 j 只能同时加工一个任务。
-
每个任务 i 在流水车间 j 上的加工时间为 p<sub>ij</sub>。
DPFSP的目标是寻找一个最佳的调度方案,使得所有任务的总加工时间最小。
3. 海鸥优化算法(SOA)
SOA算法模拟了海鸥在觅食过程中的行为,其主要步骤如下:
-
初始化种群: 随机生成一定数量的海鸥,每个海鸥代表一个可能的调度方案。
-
评估适应度: 针对每个海鸥的调度方案,计算其总加工时间,作为其适应度值。
-
更新海鸥位置: 根据适应度值,采用以下几种策略更新海鸥的位置,即:
-
攻击行为: 海鸥会攻击拥有更好适应度的海鸥,并学习其行为,以提高自身的适应度。
-
跟随行为: 海鸥会跟随适应度高的海鸥,以学习其觅食策略。
-
随机搜索: 海鸥会随机搜索食物来源。
-
-
停止条件: 当满足停止条件(例如迭代次数达到上限或适应度值不再变化)时,算法结束。
4. 基于SOA算法的DPFSP问题求解
将SOA算法应用于DPFSP问题,需要进行如下步骤:
-
编码: 将每个海鸥的调度方案编码成一个向量,该向量代表每个任务在每个流水车间的加工顺序。
-
适应度函数: 定义适应度函数为总加工时间,目标是最小化总加工时间。
-
SOA算法参数设置: 设置SOA算法的参数,包括种群大小、迭代次数、攻击概率、跟随概率、随机搜索概率等。
5. Matlab代码实现
% 初始化参数
if rand() < follow_prob
follow_index = randi(population_size);
population(i, :) = population(follow_index, :);
end
% 随机搜索
if rand() < random_search_prob
population(i, :) = randperm(n);
end
end
% 打印当前迭代次数和最优解
fprintf('迭代次数: %d, 最优解: %f\n', iter, min(fitness));
end
% 计算总加工时间
function makespan = calculate_makespan(schedule, p)
n = length(schedule);
m = size(p, 2);
makespan = 0;
for i = 1:m
current_time = 0;
for j = 1:n
task_index = schedule(j);
current_time = current_time + p(task_index, i);
end
makespan = max(makespan, current_time);
end
end
6. 实验结果与分析
通过在不同规模的DPFSP问题上进行测试,结果表明,基于SOA算法的求解方案能够有效地找到高质量的解,其性能优于传统的遗传算法和模拟退火算法。
7. 结论
本文介绍了基于SOA算法求解DPFSP问题的方案,并提供了相应的Matlab代码实现。实验结果表明,SOA算法在解决DPFSP问题方面具有良好的性能,能够有效地找到高质量的解。未来将进一步研究SOA算法的改进策略,以提升其在解决DPFSP问题上的效率和性能。
⛳️ 运行结果
🔗 参考文献
[1] 连戈,朱荣,钱斌,等.超启发式人工蜂群算法求解多场景鲁棒分布式置换流水车间调度问题[J].控制理论与应用, 2023, 40(4):713-723.
[2] 韩雪.基于迭代贪婪算法的分布式置换流水车间调度问题研究[D].聊城大学,2023.
[3] 王永.分布式置换流水车间调度问题研究概述[J].机电信息, 2016(24):2.DOI:10.3969/j.issn.1671-0797.2016.24.087.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类