【电力系统】抽水蓄能电站系统的最优竞价策略研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

抽水蓄能电站作为一种重要的电力储能方式,在构建新型电力系统、促进可再生能源消纳以及保障电网安全稳定运行方面发挥着不可替代的作用。然而,随着电力市场化改革的深入,抽水蓄能电站如何在市场环境下制定最优竞价策略,实现经济效益的最大化,同时兼顾电网的安全稳定运行,成为亟待解决的关键问题。本文深入探讨了抽水蓄能电站参与电力市场竞价的理论基础、影响因素以及优化方法,旨在为抽水蓄能电站的运营者提供决策参考,促进抽水蓄能电站的可持续发展。

关键词:抽水蓄能电站;电力市场;竞价策略;最优决策;储能系统;新型电力系统

1. 引言

随着全球能源结构的转型,可再生能源如风能和太阳能的装机容量持续增长,然而其间歇性和波动性给电力系统的稳定运行带来了严峻挑战。抽水蓄能电站凭借其快速响应、灵活调节的特点,被视为应对可再生能源并网难题、平抑电网负荷波动的重要手段。同时,在电力市场化改革的背景下,抽水蓄能电站不再仅承担辅助调峰的任务,更需要在市场竞争中寻求自身利益的最大化。

抽水蓄能电站的竞价策略并非简单的成本加成,而是需要综合考虑电力市场的价格机制、自身运行特性以及未来电力需求等多方面因素。合理制定竞价策略,不仅能提高抽水蓄能电站的经济效益,还能为电网提供可靠的调峰、调频、备用等服务,促进电力市场的健康发展。因此,针对抽水蓄能电站的最优竞价策略进行深入研究,具有重要的理论意义和实践价值。

2. 抽水蓄能电站的运行特性与竞价基础

2.1 抽水蓄能电站的运行模式

抽水蓄能电站的主要运行模式包括抽水模式和发电模式。在用电低谷时段,电站利用低价电力将水从下水库抽到上水库储存能量;在用电高峰时段,则将上水库的水释放到下水库,通过水轮机发电。抽水和发电过程的时间、功率以及效率均受到多种因素的影响,如水库容量、水头高度、机组效率等。

2.2 电力市场竞价机制

电力市场竞价机制通常分为集中竞价和双边交易两种模式。集中竞价模式中,市场主体提交报价,市场运营机构根据报价和需求信息确定出清价格。双边交易模式则由买卖双方直接协商交易价格。抽水蓄能电站的竞价策略需要根据所参与的市场机制进行灵活调整。

2.3 影响抽水蓄能电站竞价的因素

影响抽水蓄能电站竞价的因素主要包括以下几点:

  • 电力市场价格波动: 电力价格在不同时段、不同季节存在显著差异,抽水蓄能电站需要根据价格波动制定差异化的竞价策略,实现低买高卖。

  • 自身运行成本: 包括抽水耗电成本、发电损耗、机组维护成本等,这些成本是制定竞价下限的基础。

  • 水库容量限制: 上下水库的容量限制决定了电站的储能能力,影响其可参与调峰的时间和发电量。

  • 机组运行特性: 机组的爬坡速率、效率等特性直接影响电站的响应速度和出力能力。

  • 气象条件: 水库的水位、降水等因素会影响电站的可利用水量,进而影响发电量。

  • 其他市场主体的行为: 其他发电主体(尤其是可再生能源)的行为会对市场价格产生影响,抽水蓄能电站的竞价策略需要考虑这些因素。

3. 抽水蓄能电站的竞价策略模型

3.1 确定性竞价策略

确定性竞价策略是指在已知市场价格的前提下,通过优化模型确定最优的抽水和发电计划。该策略通常采用数学规划方法,如线性规划、非线性规划等,以最大化利润为目标函数,考虑电站的运行约束和市场规则。

  • 目标函数: 最大化利润,即发电收入减去抽水成本以及其他运行成本。

  • 约束条件: 包括水库容量约束、机组运行约束、电力市场交易规则等。

然而,确定性竞价策略通常无法应对电力市场的不确定性,其结果易受市场价格预测准确性的影响。

3.2 基于随机规划的竞价策略

考虑到电力市场价格的波动性和不确定性,基于随机规划的竞价策略成为一种更有效的选择。该策略通过引入随机变量来描述市场价格的不确定性,构建概率模型,从而在不确定环境下优化抽水蓄能电站的运行策略。

  • 情景生成: 利用蒙特卡洛模拟、时间序列分析等方法生成多个未来市场价格的情景。

  • 随机优化: 针对每个情景,利用随机规划模型求解最优的抽水和发电计划,最后根据概率分布对各情景的收益进行加权平均,得到整体最优策略。

3.3 基于强化学习的竞价策略

近年来,强化学习在电力系统优化领域得到了广泛应用。基于强化学习的竞价策略将抽水蓄能电站视为一个智能体,通过与电力市场环境的不断交互,学习最优的竞价策略。

  • 状态空间: 定义电站的水位、市场价格、时间等因素作为状态空间。

  • 动作空间: 定义抽水和发电的功率大小以及是否参与竞价作为动作空间。

  • 奖励函数: 定义利润最大化为奖励函数。

  • 学习算法: 利用Q-learning、Sarsa等强化学习算法进行训练,找到最优的策略。

4. 竞价策略的优化方法

4.1 考虑多时间尺度优化

电力市场的价格波动往往存在多种时间尺度,如日内波动、季节性波动等。因此,抽水蓄能电站的竞价策略需要考虑多时间尺度优化,以适应不同时间尺度的市场变化。

  • 短期优化: 针对日内市场价格波动,进行小时级的抽水和发电计划优化。

  • 中期优化: 针对季节性价格波动,进行月度甚至季度级的储能策略规划。

  • 长期优化: 考虑设备折旧、运行维护等成本,进行长期的投资和运营规划。

4.2 考虑与其他电力系统的协调运行

在新型电力系统中,抽水蓄能电站往往需要与其他发电主体(如可再生能源)进行协调运行。优化竞价策略时,需要考虑与其他电厂的协同效益,实现电力系统的整体优化。

  • 与可再生能源协同: 在可再生能源出力过剩时,增加抽水负荷;在可再生能源出力不足时,提供发电支撑。

  • 与火电机组协同: 抽水蓄能电站可以减少火电机组的启动和停机次数,降低系统的运行成本。

  • 与其他储能系统协同: 多种储能形式的联合运行可以发挥各自的优势,提高系统的整体灵活性。

4.3 引入先进预测技术

电力市场价格的准确预测是制定最优竞价策略的关键。引入先进的预测技术,如机器学习、深度学习等,可以提高价格预测的精度,从而优化抽水蓄能电站的竞价策略。

  • 数据驱动预测: 利用历史市场数据、气象数据等,训练预测模型。

  • 混合预测: 结合多种预测方法,提高预测的鲁棒性和准确性。

5. 案例分析

为进一步阐述抽水蓄能电站竞价策略的研究方法,本部分可以引入实际案例进行分析,例如:

  • 特定电力市场: 选择一个或多个典型的电力市场,分析其市场规则和价格特点。

  • 抽水蓄能电站数据: 选取某个或多个抽水蓄能电站的实际运行数据,包括水库容量、机组参数、运行成本等。

  • 模型验证: 将模型应用于实际数据,评估不同竞价策略的收益和风险,分析模型的有效性。

  • 策略比较: 比较不同竞价策略的优劣,分析其适用场景和局限性。

6. 结论与展望

本文深入探讨了抽水蓄能电站参与电力市场竞价的理论基础、影响因素以及优化方法。通过分析可知,抽水蓄能电站的竞价策略是一个复杂的优化问题,需要综合考虑电力市场的价格机制、自身运行特性以及未来电力需求等多方面因素。基于随机规划和强化学习的竞价策略模型,结合多时间尺度优化、与其他电力系统的协调运行以及先进预测技术,可以有效地提高抽水蓄能电站的经济效益,并为电力系统的安全稳定运行做出贡献。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值