✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
第五代移动通信(5G)及其后续技术的发展,对大规模连接应用和服务提出了前所未有的需求。 无人驾驶飞行器(UAV),即无人机,凭借其高度的灵活性和可部署性,已经成为增强网络覆盖、提高系统容量的强大工具。 本文探讨了无人机辅助可见光通信(VLC)在满足大规模连接需求方面的潜力,并提出了一种基于非正交多址接入(NOMA)的解决方案。 具体而言,本文致力于解决一个联合优化问题,即如何在功率分配和无人机位置部署之间进行平衡,以最大化所有用户的总吞吐量,同时满足功率分配、用户服务质量(QoS)和无人机位置的各种约束。
然而,所提出的联合优化问题本质上是非凸且NP-hard的,因此难以找到全局最优解。传统的坐标下降算法等方法,由于VLC信道模型的复杂性,也难以有效地解决该问题。 为了应对这一挑战,本文提出采用哈里斯鹰优化(HHO)算法来寻找接近最优的解决方案。 HHO算法是一种新兴的元启发式算法,它模仿了哈里斯鹰在捕猎猎物时的合作行为,具有良好的全局搜索能力和收敛速度。
此外,为了进一步提高算法的效率,并使其能够在实时应用中得以应用,本文还提出了将HHO算法与人工神经网络(ANN)相结合的设计方案。 基于HHO算法的训练器能够有效地指导ANN的学习过程,帮助ANN找到更优的参数配置,从而避免陷入传统训练器容易遇到的“局部极小”陷阱。 通过离线训练ANN,并在实际应用中利用ANN快速预测最佳的功率分配和无人机位置,可以实现对系统资源的实时优化配置。
本研究的主要贡献体现在以下几个方面:
-
提出了一种基于无人机辅助VLC的NOMA系统架构,旨在解决大规模连接应用的需求。 通过结合无人机的灵活性和VLC的高带宽潜力,可以显著提升系统的容量和覆盖范围。
-
构建了一个复杂的联合优化问题,该问题考虑了功率分配、无人机位置和用户QoS等多方面的约束条件。 这种全面的建模能够更真实地反映实际应用场景,并为算法设计提供更坚实的理论基础。
-
提出了一种基于HHO算法的优化解决方案,该方案能够有效地解决非凸且NP-hard的优化问题,并找到接近全局最优的解。 HHO算法的良好性能已被广泛验证,并能够克服传统算法的局限性。
-
提出了一种基于HHO算法和ANN的实时设计方案,该方案能够实现对系统资源的实时优化配置,并克服传统训练器容易遇到的“局部极小”陷阱。 这项创新性的设计为无人机辅助VLC系统的实际应用铺平了道路。
为了验证所提出的算法和设计的有效性,本文进行了大量的数值仿真实验。 仿真结果表明,与几种替代方案和现有的元启发式算法相比,基于HHO算法的优化方案和HHO训练器都表现出更优越的性能。 具体而言,所提出的算法能够显著提高系统的总吞吐量,降低用户的掉线率,并提高系统的鲁棒性。
总而言之,本文提出了一种基于HHO算法的无人机辅助VLC NOMA系统设计,该设计能够有效地解决大规模连接应用的需求,并实现对系统资源的实时优化配置。 本文的研究成果为未来的无人机辅助VLC系统的发展提供了一个有价值的参考,并为进一步的研究奠定了坚实的基础。 未来研究方向可以包括:
-
考虑更复杂的信道模型,例如包含遮蔽效应和多径效应的信道模型。
-
探索基于深度学习的更先进的优化算法。
-
研究多无人机协同通信场景下的资源分配问题。
-
考虑能量效率和无人机飞行时间的约束条件。
通过不断的研究和创新,无人机辅助VLC技术有望在未来的无线通信系统中发挥越来越重要的作用,为人们带来更丰富、更便捷的通信体验。
⛳️ 运行结果
🔗 参考文献
[1] Pham, Quoc Viet , et al. "Sum-Rate Maximization for UAV-assisted Visible Light Communications using NOMA: Swarm Intelligence meets Machine Learning." (2021).
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类