【通信】基于哈里斯鹰算法和海洋捕食者算法的NOMA实现无人机辅助可见光通信的总和速率最大化附Matlab代码和论文

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

第五代移动通信(5G)及其后续技术的发展,对大规模连接应用和服务提出了前所未有的需求。 无人驾驶飞行器(UAV),即无人机,凭借其高度的灵活性和可部署性,已经成为增强网络覆盖、提高系统容量的强大工具。 本文探讨了无人机辅助可见光通信(VLC)在满足大规模连接需求方面的潜力,并提出了一种基于非正交多址接入(NOMA)的解决方案。 具体而言,本文致力于解决一个联合优化问题,即如何在功率分配和无人机位置部署之间进行平衡,以最大化所有用户的总吞吐量,同时满足功率分配、用户服务质量(QoS)和无人机位置的各种约束。

然而,所提出的联合优化问题本质上是非凸且NP-hard的,因此难以找到全局最优解。传统的坐标下降算法等方法,由于VLC信道模型的复杂性,也难以有效地解决该问题。 为了应对这一挑战,本文提出采用哈里斯鹰优化(HHO)算法来寻找接近最优的解决方案。 HHO算法是一种新兴的元启发式算法,它模仿了哈里斯鹰在捕猎猎物时的合作行为,具有良好的全局搜索能力和收敛速度。

此外,为了进一步提高算法的效率,并使其能够在实时应用中得以应用,本文还提出了将HHO算法与人工神经网络(ANN)相结合的设计方案。 基于HHO算法的训练器能够有效地指导ANN的学习过程,帮助ANN找到更优的参数配置,从而避免陷入传统训练器容易遇到的“局部极小”陷阱。 通过离线训练ANN,并在实际应用中利用ANN快速预测最佳的功率分配和无人机位置,可以实现对系统资源的实时优化配置。

本研究的主要贡献体现在以下几个方面:

  • 提出了一种基于无人机辅助VLC的NOMA系统架构,旨在解决大规模连接应用的需求。 通过结合无人机的灵活性和VLC的高带宽潜力,可以显著提升系统的容量和覆盖范围。

  • 构建了一个复杂的联合优化问题,该问题考虑了功率分配、无人机位置和用户QoS等多方面的约束条件。 这种全面的建模能够更真实地反映实际应用场景,并为算法设计提供更坚实的理论基础。

  • 提出了一种基于HHO算法的优化解决方案,该方案能够有效地解决非凸且NP-hard的优化问题,并找到接近全局最优的解。 HHO算法的良好性能已被广泛验证,并能够克服传统算法的局限性。

  • 提出了一种基于HHO算法和ANN的实时设计方案,该方案能够实现对系统资源的实时优化配置,并克服传统训练器容易遇到的“局部极小”陷阱。 这项创新性的设计为无人机辅助VLC系统的实际应用铺平了道路。

为了验证所提出的算法和设计的有效性,本文进行了大量的数值仿真实验。 仿真结果表明,与几种替代方案和现有的元启发式算法相比,基于HHO算法的优化方案和HHO训练器都表现出更优越的性能。 具体而言,所提出的算法能够显著提高系统的总吞吐量,降低用户的掉线率,并提高系统的鲁棒性。

总而言之,本文提出了一种基于HHO算法的无人机辅助VLC NOMA系统设计,该设计能够有效地解决大规模连接应用的需求,并实现对系统资源的实时优化配置。 本文的研究成果为未来的无人机辅助VLC系统的发展提供了一个有价值的参考,并为进一步的研究奠定了坚实的基础。 未来研究方向可以包括:

  • 考虑更复杂的信道模型,例如包含遮蔽效应和多径效应的信道模型。

  • 探索基于深度学习的更先进的优化算法。

  • 研究多无人机协同通信场景下的资源分配问题。

  • 考虑能量效率和无人机飞行时间的约束条件。

通过不断的研究和创新,无人机辅助VLC技术有望在未来的无线通信系统中发挥越来越重要的作用,为人们带来更丰富、更便捷的通信体验。

⛳️ 运行结果

🔗 参考文献

[1] Pham, Quoc Viet , et al. "Sum-Rate Maximization for UAV-assisted Visible Light Communications using NOMA: Swarm Intelligence meets Machine Learning." (2021).

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值