【无人机】密集城市环境中无人机空对地对地 (U2G) 路径损耗研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机(UAV),又称无人飞行器,凭借其灵活机动、成本效益高、部署迅速等优势,在测绘、监控、物流、应急救援等领域展现出巨大的应用潜力。随着智慧城市建设的加速,无人机在城市环境中的应用日益普及,例如智能包裹递送、基础设施巡检、城市安防监控等。然而,密集城市环境复杂的电磁环境给无人机无线通信带来了严峻挑战。其中,路径损耗作为影响无线通信性能的关键因素,直接关系到无人机与地面基站或用户设备(UE)之间通信的可靠性和有效性。因此,深入研究密集城市环境中无人机空对地对地(U2G)路径损耗特性,对优化无人机网络规划、提高通信质量、推动无人机技术在城市环境中的广泛应用具有重要的理论和实践意义。

一、密集城市环境U2G路径损耗的挑战性

密集城市环境的U2G路径损耗模型构建面临诸多挑战,主要体现在以下几个方面:

  • 多径效应严重:

     密集城市环境中高楼林立,建筑结构复杂,无线信号在传播过程中会经历大量的反射、衍射和散射,形成复杂的多径效应。不同路径的信号到达接收端时,会产生幅度衰落和相位偏移,造成信号的叠加干扰,影响接收信号的质量,从而增加路径损耗。

  • 遮蔽效应显著:

     城市建筑、树木、车辆等障碍物对无线信号的传播产生严重的遮蔽效应。无人机与地面设备之间可能存在多个遮蔽物,导致信号传播路径被阻挡,信号强度大幅衰减,加剧路径损耗。遮蔽效应的随机性和时变性使得路径损耗模型的构建更加困难。

  • 传播环境的异构性:

     密集城市环境的电磁环境呈现出明显的异构性。不同区域的建筑密度、街道宽度、绿化覆盖率等差异显著,导致无线信号的传播特性存在较大差异。传统的路径损耗模型往往难以精确地描述这种异构性,导致模型预测精度降低。

  • 无人机高度的影响:

     无人机的高度是影响U2G路径损耗的关键因素之一。随着无人机高度的变化,视距(LOS)链路和非视距(NLOS)链路的比例会发生变化,从而影响路径损耗。低空飞行时,无人机更容易受到建筑物的遮蔽,而高空飞行时,信号传播距离增大,自由空间损耗也会增加。

  • 信道环境的时变性:

     城市环境是动态变化的,例如车辆的移动、行人的走动等,都会引起信道环境的变化,导致路径损耗的时变性。这种时变性增加了路径损耗模型预测的难度,需要考虑动态信道环境的影响。

二、U2G路径损耗模型的分类与研究现状

目前,U2G路径损耗模型主要分为以下几类:

  • 理论模型:

     基于电磁波传播理论,利用几何光学、射线追踪等方法,对无线信号在城市环境中的传播过程进行建模。理论模型能够较好地反映信号传播的物理机制,但计算复杂度高,需要精确的城市三维信息,难以应用于大规模场景。常见的理论模型包括自由空间传播模型、双射线模型等。

  • 经验模型:

     通过大量的实地测量数据,对路径损耗进行统计分析,拟合得到经验公式。经验模型简单易用,计算速度快,但模型参数依赖于特定的测量环境,泛化能力较差。常用的经验模型包括 COST 231-Hata 模型、Okumura-Hata 模型等。

  • 半经验模型:

     结合理论分析和实地测量数据,对路径损耗进行建模。半经验模型在理论模型的基础上引入经验参数,对模型进行修正,提高模型的预测精度和泛化能力。例如,对自由空间传播模型进行修正,考虑遮蔽效应的影响。

  • 机器学习模型:

     利用机器学习算法,例如支持向量机(SVM)、人工神经网络(ANN)、深度学习(DL)等,对路径损耗进行建模。机器学习模型能够自动学习城市环境的复杂特征,预测精度高,泛化能力强,但需要大量的训练数据,模型的解释性较差。

近年来,研究人员针对密集城市环境U2G路径损耗进行了大量的研究,取得了许多进展。例如:

  • 考虑建筑物遮蔽效应的路径损耗模型:

     一些研究人员通过引入遮蔽因子(例如,建筑物遮蔽概率、遮蔽损耗等),对传统路径损耗模型进行修正,提高了模型对遮蔽效应的描述能力。

  • 基于射线追踪的路径损耗仿真:

     利用射线追踪技术,模拟无线信号在城市环境中的传播过程,可以获得更精确的路径损耗预测结果。但射线追踪需要精确的城市三维信息,计算复杂度高。

  • 基于机器学习的路径损耗预测:

     利用机器学习算法,例如神经网络、支持向量机等,对路径损耗进行预测。这些模型能够自动学习城市环境的复杂特征,预测精度高,但需要大量的训练数据。

  • 不同无人机高度下的路径损耗模型:

     研究人员针对不同的无人机高度,提出了相应的路径损耗模型。例如,针对低空无人机,考虑建筑物遮蔽的影响,针对高空无人机,考虑自由空间损耗的影响。

结论

密集城市环境中无人机空对地对地(U2G)路径损耗研究是推动无人机技术在城市环境中广泛应用的关键。深入理解城市环境中复杂的电磁环境特性,构建更精确、更高效的路径损耗模型,对于优化无人机网络规划、提高通信质量、保障无人机安全飞行具有重要的意义。未来的研究应着重于融合多种数据源、利用机器学习算法、考虑动态信道环境,并针对特定的应用场景,构建更加智能化的路径损耗模型,为无人机在智慧城市建设中发挥更大的作用提供有力支撑。 同时,也需要加强实地测量,验证和优化现有的路径损耗模型,积累更多的数据用于模型的训练和改进。 通过不断的探索和创新,可以克服密集城市环境带来的挑战,推动无人机技术的发展,为构建更加智能、便捷的城市生活贡献力量。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值