✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:现代工程设计和工艺参数优化面临着日益复杂的多目标问题。传统的优化方法往往难以在庞大的参数空间中高效地找到Pareto最优解集。本文提出一种结合Transformer-GRU神经网络模型和NSGA-II算法的优化框架,以解决复杂工程问题中的工艺参数和工程设计优化难题。该框架首先利用Transformer-GRU模型学习工程系统的非线性映射关系,实现对系统性能的精确预测。然后,采用NSGA-II算法在Transformer-GRU模型预测的基础上进行多目标优化,获得Pareto最优解集,为决策者提供多样化的选择方案。通过案例研究,验证了该框架在工艺参数和工程设计优化方面的有效性和优越性。
关键词:Transformer-GRU,NSGA-II,多目标优化,工艺参数,工程设计
1 引言
在工程领域,工艺参数优化和工程设计优化是提高产品性能、降低成本、增强可靠性的关键环节。随着工业技术的进步,工程系统的复杂性日益增加,涉及的参数也越来越多,不同参数之间往往存在复杂的非线性关系。此外,优化目标也呈现出多元化的趋势,如在提高产品性能的同时,还需要考虑制造成本、环境影响等因素。因此,传统的单目标优化方法和基于经验的参数调整方式已经难以满足现代工程的需求。
多目标优化问题(Multi-Objective Optimization Problems, MOOPs)是指存在多个需要同时优化的目标函数,且这些目标函数之间通常存在冲突。在工程实践中,许多优化问题都可以归结为MOOPs,例如,优化产品的强度和重量,优化产品的性能和成本等。解决MOOPs的目标是找到一组Pareto最优解集,每个解都代表着在不同目标之间的一种权衡,决策者可以根据实际需求从中选择合适的解。
针对MOOPs的求解,进化算法(Evolutionary Algorithms, EAs)表现出强大的优势。EAs具有全局搜索能力,对目标函数的连续性、可微性等没有特殊要求,能够有效地处理复杂、非线性、不确定性的优化问题。其中,非支配排序遗传算法II (Non-dominated Sorting Genetic Algorithm II, NSGA-II)是一种被广泛应用的多目标优化算法。NSGA-II通过快速非支配排序和拥挤度距离计算,保证了算法的收敛性和解的多样性。
然而,对于复杂工程系统而言,直接使用NSGA-II算法进行优化仍然存在挑战。首先,工程系统的性能评估通常需要进行复杂的仿真或实验,计算成本高昂。其次,工程系统的输入输出关系往往是非线性的,难以建立精确的数学模型。为了克服这些挑战,近年来,将机器学习模型与优化算法相结合的策略越来越受到重视。
2 相关研究
近年来,基于机器学习的代理模型(Surrogate Model)优化方法得到了广泛研究。代理模型利用机器学习算法学习工程系统的输入输出关系,从而代替耗时的仿真或实验。常见的代理模型包括支持向量机(Support Vector Machine, SVM)、高斯过程(Gaussian Process, GP)和神经网络(Neural Network, NN)等。
深度学习作为机器学习的一个分支,在建模复杂非线性关系方面表现出强大的能力。循环神经网络(Recurrent Neural Network, RNN)及其变体,如长短期记忆网络(Long Short-Term Memory, LSTM)和门控循环单元(Gated Recurrent Unit, GRU),在处理序列数据方面具有优势。然而,传统的RNN模型在处理长序列时容易出现梯度消失或梯度爆炸的问题。
Transformer模型是一种基于自注意力机制的神经网络模型,能够并行地处理序列数据,有效地解决了长序列依赖问题。Transformer模型在自然语言处理、图像识别等领域取得了显著成果,近年来也开始应用于工程领域的建模和预测。
将Transformer模型与优化算法相结合,能够有效地解决复杂工程优化问题。例如,可以将Transformer模型作为代理模型,代替耗时的仿真或实验,提高优化效率。
3 基于Transformer-GRU与NSGA-II的优化框架
本文提出一种结合Transformer-GRU神经网络模型和NSGA-II算法的优化框架,以解决复杂工程问题中的工艺参数和工程设计优化难题。该框架包含以下几个主要步骤:
3.1 数据收集与预处理
首先,需要收集工程系统的输入输出数据。输入数据包括工艺参数和工程设计变量,输出数据包括需要优化的目标函数值。数据来源可以是仿真结果、实验数据或历史数据。收集到的数据需要进行预处理,包括数据清洗、数据归一化等操作,以提高模型的训练效果。
3.2 Transformer-GRU模型构建与训练
Transformer-GRU模型是本文提出的核心模型,用于学习工程系统的非线性映射关系。该模型结合了Transformer模型和GRU模型的优点,能够有效地处理具有长序列依赖关系的工程数据。
Transformer部分用于捕捉全局依赖关系,利用自注意力机制计算输入序列中不同位置之间的相关性。GRU部分用于提取序列的时间特征,捕捉序列中的动态变化。通过将Transformer和GRU模型结合,可以更好地学习工程系统的复杂行为。
模型训练过程需要大量的训练数据,通过优化模型的损失函数,使模型能够准确地预测工程系统的性能。常用的损失函数包括均方误差(Mean Squared Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)。
3.3 NSGA-II算法优化
在Transformer-GRU模型训练完成后,可以利用该模型作为代理模型,代替耗时的仿真或实验。NSGA-II算法在Transformer-GRU模型预测的基础上进行多目标优化,获得Pareto最优解集。
NSGA-II算法的主要步骤包括:
-
**种群初始化:**随机生成一定数量的个体,每个个体代表一组工艺参数或工程设计变量。
-
**非支配排序:**根据目标函数值对种群中的个体进行非支配排序,将个体分为不同的等级。
-
**拥挤度距离计算:**计算每个个体的拥挤度距离,用于衡量个体周围的密度。
-
**选择:**根据非支配等级和拥挤度距离,选择优秀的个体进入下一代。
-
**交叉:**对选择出来的个体进行交叉操作,产生新的个体。
-
**变异:**对交叉产生的个体进行变异操作,增加种群的多样性。
-
**更新:**将新生成的个体与上一代个体合并,进行下一轮迭代。
通过多次迭代,NSGA-II算法最终能够找到一组Pareto最优解集,为决策者提供多样化的选择方案。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇