✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着全球能源危机日益严重以及环保意识的不断增强,电动汽车(EV)作为一种清洁、高效的交通工具,受到了广泛的关注和推广。电动汽车的普及必然会给电网带来新的负荷需求,特别是充电负荷。因此,准确预测电动汽车的充电负荷对于电网的规划、运行和优化至关重要。本文基于蒙特卡洛法,针对电动汽车的常规充电、快速充电和更换电池三种充电模式,构建充电负荷模拟模型,并对不同充电模式下的负荷特性进行分析,旨在为电力系统应对电动汽车大规模接入提供理论依据和技术支持。
关键词: 电动汽车,充电负荷,蒙特卡洛法,常规充电,快速充电,换电模式,负荷预测
1. 引言
在全球范围内,能源消耗和环境污染问题日益突出,寻求可持续发展的能源策略已成为当务之急。电动汽车作为一种减少尾气排放、降低对化石燃料依赖的有效途径,在全球范围内得到了迅猛发展。然而,大规模电动汽车的接入将会对现有的电力系统产生显著影响,其中最直接的影响体现在电网负荷方面。电动汽车的充电行为具有随机性、不确定性和时变性等特点,使得充电负荷的预测变得极具挑战性。准确地预测电动汽车充电负荷,有助于电网规划者提前应对负荷增长,优化电力系统的运行,提高电网的可靠性和经济性。
电动汽车的充电模式主要分为常规充电、快速充电和更换电池三种。常规充电通常在家中或工作场所进行,充电功率较低,充电时间较长。快速充电通常在公共充电站进行,充电功率较高,充电时间较短。更换电池模式则通过更换电池的方式实现快速能量补充。不同的充电模式对电网的影响各不相同,因此,对不同充电模式下的负荷特性进行深入研究具有重要意义。
蒙特卡洛法是一种基于随机抽样和统计推断的数值计算方法,其核心思想是通过大量的随机模拟来逼近问题的解。由于电动汽车充电行为的随机性,蒙特卡洛法在电动汽车充电负荷预测领域得到了广泛应用。本文将基于蒙特卡洛法,针对三种不同的充电模式,建立电动汽车充电负荷模拟模型,并分析不同充电模式下的负荷特性,为电网规划和运行提供参考。
2. 电动汽车充电负荷建模方法
电动汽车充电负荷的建模需要考虑诸多因素,包括电动汽车的数量、类型、行驶模式、充电行为、充电功率等。基于蒙特卡洛法的充电负荷模拟,其基本流程包括以下几个步骤:
-
2.1 输入参数确定: 首先需要确定模拟所需的输入参数,包括电动汽车的数量、类型比例、日行驶里程分布、出行时间分布、充电起始时刻分布、充电功率、充电效率等。这些参数可以通过调查统计数据、历史数据分析和文献研究等方式获得。对于某些参数,可以使用概率分布模型进行描述,例如,日行驶里程可以采用正态分布或对数正态分布进行建模,出行时间可以采用Beta分布或Gamma分布进行建模。
-
2.2 随机抽样: 基于确定的输入参数和概率分布模型,利用蒙特卡洛法进行随机抽样,生成每个电动汽车的日行驶里程、出行时间、充电起始时刻等参数。
-
2.3 充电行为模拟: 根据随机抽样得到的参数,模拟每个电动汽车的充电行为。例如,根据日行驶里程和电动汽车的电池容量,可以计算出电动汽车的剩余电量;根据充电起始时刻和充电功率,可以确定电动汽车的充电时间和充电负荷。
-
2.4 负荷汇总: 将所有电动汽车的充电负荷进行汇总,得到电动汽车总的充电负荷曲线。
-
2.5 结果分析: 对充电负荷曲线进行分析,包括负荷峰值、负荷谷值、负荷率等指标,并对不同充电模式下的负荷特性进行比较。
3. 三种充电模式的建模分析
本文分别针对常规充电、快速充电和更换电池三种充电模式进行建模和分析。
-
3.1 常规充电模式建模: 常规充电通常发生在家庭或工作场所,充电功率较低,充电时间较长。在模拟常规充电模式时,需要考虑以下因素:
- 充电时间:
常规充电通常在夜间进行,可以假设充电起始时刻服从一定的概率分布,例如正态分布或均匀分布。
- 充电功率:
常规充电的功率通常较低,可以假设充电功率为一个固定值,或者服从一定的概
- 充电时间:
⛳️ 运行结果
🔗 参考文献
[1] 诸晓骏.考虑电动汽车有序充电的主动配电网源网荷优化调度研究[D].东南大学,2016.DOI:10.7666/d.Y3141913.
[2] 莫菲.高速公路电动车无线充电策略仿真与控制[D].广东工业大学,2022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇