【机器人栅格地图】基于人工兔算法ARO和蜣螂算法DBO实现机器人栅格地图路径规划(目标函数:最短距离)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

机器人路径规划是机器人学领域中的一个核心问题,其目标是为机器人在给定环境中找到一条从起点到终点的最优路径,同时避开障碍物。栅格地图作为一种常用的环境表示方法,凭借其简洁性和易于处理的特性,被广泛应用于路径规划问题中。然而,在复杂环境下,传统的路径规划算法(如A*算法、Dijkstra算法等)可能面临计算复杂度高、易陷入局部最优等问题。因此,研究高效、鲁棒的全局优化算法用于栅格地图路径规划具有重要的理论价值和实际意义。本文将探讨利用两种新兴的元启发式算法:人工兔算法 (Artificial Rabbits Optimization, ARO) 和蜣螂优化算法 (Dung Beetle Optimizer, DBO),来实现机器人在栅格地图中的路径规划,并以最短距离作为目标函数。

一、栅格地图及其路径规划问题描述

栅格地图是一种将环境空间离散化为二维网格的表示方法,每个网格单元代表环境中的一个区域,可以标记为可行区域(允许机器人通过)或障碍物区域(禁止机器人通过)。路径规划的目标是在栅格地图中找到一条由一系列相邻可行栅格单元组成的路径,连接起点和终点,并满足预设的优化目标。在本研究中,优化目标是最短距离,即找到一条总长度最小的路径。

路径规划问题可以形式化描述如下:

  • 环境表示:

     栅格地图,表示为二维矩阵,其中每个元素代表一个栅格单元的状态(可行或障碍)。

  • 起点:

     栅格地图中的一个可行栅格单元的坐标。

  • 终点:

     栅格地图中的另一个可行栅格单元的坐标。

  • 可行路径:

     一系列相邻可行栅格单元的有序集合,连接起点和终点。

  • 目标函数:

     路径长度,定义为路径中相邻栅格单元之间的距离之和。 通常采用曼哈顿距离或欧几里得距离进行计算。

  • 约束条件:

     路径必须全部位于可行区域内,避免穿越障碍物。

二、人工兔算法 (ARO) 概述

人工兔算法是一种基于自然界兔子生存行为的元启发式优化算法。该算法模拟了兔子为了躲避天敌而采取的两种主要策略:随机躲藏 (Random Hiding) 和协作躲藏 (Collective Hiding)。

  • 随机躲藏:

     兔子随机选择一个位置躲藏,旨在增加天敌找到自己的难度。在 ARO 算法中,这表现为个体在搜索空间中随机移动,探索新的区域。

  • 协作躲藏:

     兔子会互相合作,选择更加安全的位置躲藏。在 ARO 算法中,这表现为个体之间信息共享,相互学习,共同朝向更优解的方向移动。

ARO 算法具有以下优点:

  • 简单易懂:

     算法原理基于自然现象,易于理解和实现。

  • 参数较少:

     需要调整的参数较少,降低了算法调参的难度。

  • 全局搜索能力强:

     随机躲藏机制有助于算法跳出局部最优,增强全局搜索能力。

  • 收敛速度快:

     协作躲藏机制有助于算法快速收敛到最优解。

三、蜣螂优化算法 (DBO) 概述

蜣螂优化算法是模仿蜣螂在自然界中的觅食、繁殖和生存行为而提出的一种新型元启发式算法。DBO算法将蜣螂的行为抽象为滚球蜣螂、繁殖蜣螂、觅食蜣螂、偷窃蜣螂等角色,通过模拟这些角色的行为来搜索最优解。

  • 滚球蜣螂:

     主要负责全局搜索,模拟蜣螂滚动粪球寻找食物的过程。

  • 繁殖蜣螂:

     负责选择优质的繁殖地点,保证种群的繁衍。

  • 觅食蜣螂:

     负责在局部范围内搜索食物,提高搜索精度。

  • 偷窃蜣螂:

     模拟蜣螂偷窃其他蜣螂的食物的行为,增加种群的多样性,防止早熟收敛。

DBO算法具有以下优点:

  • 较强的全局搜索能力:

     滚球蜣螂的角色能够在较大范围内探索解空间,有助于寻找全局最优解。

  • 较好的局部搜索能力:

     觅食蜣螂的角色能够在局部范围内进行精细搜索,提高搜索精度。

  • 较高的鲁棒性:

     DBO算法对参数不敏感,具有较好的鲁棒性。

  • 能够有效平衡勘探和开发:

     通过不同角色的行为协调,能够在勘探和开发之间取得较好的平衡。

四、基于 ARO 和 DBO 的栅格地图路径规划

将 ARO 和 DBO 应用于栅格地图路径规划,需要将路径规划问题转化为算法可以处理的形式。

  1. 个体编码: 每个个体代表一条潜在的路径,可以用一系列栅格单元的坐标来表示。 例如,可以将路径表示为一个长度可变的数组,数组中的每个元素对应于路径中的一个栅格单元的坐标。

  2. 适应度函数: 适应度函数用于评价个体的优劣,对应于路径的质量。在本研究中,适应度函数定义为路径的总长度,即路径中相邻栅格单元之间的距离之和。 路径长度越短,适应度值越高。 此外,需要加入惩罚机制,对穿过障碍物的路径进行惩罚,使其适应度值降低。

  3. 算法实现:

    • 初始化:随机生成一定数量的个体(蜣螂),并根据角色(滚球、繁殖、觅食、偷窃)进行划分。

    • 迭代:在每一代中,不同角色的蜣螂根据其自身的行为规则更新自身的位置。

    • 终止条件:达到最大迭代次数或找到满足要求的路径。

    • 滚球蜣螂:模拟滚动粪球的行为,在全局范围内搜索食物。

    • 繁殖蜣螂:根据环境选择合适的繁殖地点。

    • 觅食蜣螂:在繁殖地点周围进行精细搜索。

    • 偷窃蜣螂:随机选择其他蜣螂进行偷窃。

    • 初始化:随机生成一定数量的个体(兔子),作为初始种群。

    • 迭代:在每一代中,个体根据随机躲藏和协作躲藏策略更新自身的位置。

    • 终止条件:达到最大迭代次数或找到满足要求的路径。

    • 随机躲藏:个体随机选择一个方向进行移动,并判断移动后的位置是否为可行区域。 如果移动后的位置为障碍物区域,则放弃本次移动。

    • 协作躲藏:个体学习当前种群中的最优个体,并向其靠近。

    • ARO 实现:

    • DBO 实现:

  4. 路径平滑: 由于 ARO 和 DBO 产生的路径可能包含较多的转折点,为了使路径更加平滑,可以采用一些路径平滑算法,例如 B-样条曲线、贝塞尔曲线等。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值