✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
概要: 这是我大三上学期某一门课程的一次作业。本文基于MATLAB及其GUI界面设计了一个基于经典力学的三体运动数值模拟软件,旨在建立经典力学框架内的空间三质点运动模型,又名为三体运动模型。软件根据当前的质点初始运动参数,运用数值模拟,迭代计算出后续每一时刻各个质点的运动参数,并将计算结果实时显示出来。本软件可用于质点力学与基础天体物理学的自主学习、教学演示和相关领域的科学研究。
关键字:MATLAB;三体运动;数值模拟;可视化
1 背景说明
公元1900年,在二十世纪第一次数学家大会上,数学家希尔伯特第一次提出了“完美数学问题”准则:问题既能被简明扼要地表达出来,然而问题的解决又是如此困难以至于必须要有全新的思想方法才能解决。为了说明他的观点,希尔伯特举了两个最经典的例子,第一是费马猜想,第二就是N体问题。
N题问题是指:三维自由空间中N个可视为质点的恒质天体在某一时间断面质量、位置及初始速度已知的条件下求该时刻后任一时刻N个质点的位置和速度。当N小于3时,该问题可以用牛顿力学完美解决,但当N大于等于3后,仅仅依靠经典力学体系无法求得精确解。
三体问题的起源最晚可追溯到17世纪,当牛顿的划时代巨著《自然哲学的数学原理》问世之后,他的引力理论已经能正确预测两个天体(如一颗恒星和一颗行星)的运动规律,即两个互相吸引的天体的轨道为椭圆形。但是,三个天体的问题要复杂得多,在当时,牛顿没能提出类似的通解。时光流逝,经过18、19两个多世纪几代数学家的研究,人们已经认识到三体系统是一个混沌系统,不存在解析解。混沌系统是典型的非线性系统,它的重要特征之一在于误差的累积性,且误差来源于计算本身——这个“计算本身”是指计算数据的无理性以及混沌系统的微扰敏感性。也就是说,三体系统不仅不具备普遍意义上的解析解,甚至连较长期的数值预测也无法实现,这也是三体问题吸引和困扰几代最杰出的数学家几百年之久的重要原因。
以上所述就是开展本实验的大致背景,本实验拟在经典力学体系框架内,运用迭代算法对三体运动模型进行数值模拟。正如上文所说,三体系统的无解析解性和误差累积性决定了“经典力学+数值模拟”的办法仅能在宏观视角粗糙地展现三体运动特征,且预测结果的可信度将随时间的增加而下降。所幸的是,三体系统作为一个混沌系统,也有若干特殊的解可以解析表达。迄今为止,科学家们总共发现了16族三体问题的特解,其中包含有若干稳定的解析解。在这其中,塞尔维亚物理学家Milovan Šuvakov和V. Dmitrašinović于2012年前后采用数值模拟的思路,在已有特解的基础上,通过对各项初始值进行微调,利用计算机上进行了海量运算,终于寻找得到13族特解,一举超过了过去三百多年间所找到的所有特解的总和。这一振奋人心的科学发现不仅拓宽了在三体问题上人类已有的知识界限,更提出了一种在混沌中求解析解的计算方法。两位科学家的研究论文Three Classes of Newtonian Three-Body Planar Periodic Orbits已于2013年3月发表在知名物理学杂志《PHYSICAL REVIEW LETTERS》上。
2 实验目的
本实验基于计算机数值模拟思路,利用迭代法,在经典力学体系框架内建立三体运动模型并完成多种特解的可视化实现。
3 基本原理及思路
设三维自由空间中有三个质量、初始位置和初始速度已知的三个质点,分别记作:
A(M1,X1,Y1,Z1,U1,V1,W1);
B(M2,X2,Y2,Z2,U2,V2,W2);
C(M3,X3,Y3,Z3,U3,V3,W3);
其中,X、Y、Z分别表示各个质点在X、Y、Z方向上的坐标,U、V、W分别表示各个质点在X、Y、Z方向上的速度分量。
设fAB表示质点A对质点B的作用力,fBA表示质点B对质点A的反作用力,则三个质点之间的万有引力可表示为f12、f23、f31、f31、f32、f21,根据牛顿第三定律,有:
f12=-f21;
f23=-f32;
f31=-f13;
这样,牛顿第三定律将力的变量由6个减少到3个。
根据牛顿第二定律,质点间相互作用力f12、f23、f31可分别被表达为:
f12=g*M1*M2/R12^3*[X1-X2,Y1-Y2,Z1-Z2];
f23=g*M2*M3/R23^3*[X2-X3,Y2-Y3,Z2-Z3];
f31=g*M3*M1/R13^3*[X3-X1,Y3-Y1,Z3-Z1];
<font face="宋体">其中g是引力常量,取值为6.67x10^-11(N·m^2 /kg^2),R12、R23、R13分别表示两两质点之间的距离,可以表达为:
R12=sqrt((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2);
R13=sqrt((X1-X3)^2+(Y1-Y3)^2+(Z1-Z3)^2);
R23=sqrt((X2-X3)^2+(Y2-Y3)^2+(Z2-Z3)^2);
注意,式中f12、f23、f31表达为三维矢量。
由于三体问题是一个发生在三维自由空间的动力学问题,所以势必要进行矢量分析。本实验建立空间直角坐标系,根据矢量的叠加性原理,将所有三维矢量包括引力、加速度、速度和位置矢量等分别分解到X、Y、Z三个坐标轴上分析,就将矢量运算简化为标量运算。现在,以X轴为例,对三体系统进行经典动力学分析。
设三质点在X轴上的加速度分别为Ax1、Ax2、Ax3,则可以表达为:
Ax1=(-f12(1)+f31(1))/M1;
Ax2=( f12(1)-f23(1))/M2;
Ax3=( f23(1)-f31(1))/M3;
速度可以表达为:
U1=U1+Ax1*t;
U2=U2+Ax2*t;
U3=U3+Ax3*t;
位置矢量可以表达为:
X1=X1+U1*t+1/2*Ax1*t^2;
X2=X2+U2*t+1/2*Ax2*t^2;
X3=X3+U3*t+1/2*Ax3*t^2;
<font face="宋体">其中f12(1)意为三维矢量f12在X轴向上的分量,t为迭代的时间间隔,本实验中t的取值为0.00001。
以此类推,在Y轴和Z轴上也进行类似的分析和计算,就可以在三维自由空间中建立一个简单的三体运动模型。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类