【DVHop定位】基于改进浣熊优化算法的多通信半径和跳距加权DVHop定位算法,对比前后附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无线传感器网络(WSNs)在环境监测、工业控制、军事侦察等众多领域展现出巨大的应用潜力。准确的节点定位是WSNs有效运作的基础。DVHop算法作为一种经典的距离矢量定位算法,因其实现简单、无需测距硬件等优点而被广泛应用。然而,标准DVHop算法在定位精度方面存在局限性,特别是在节点分布不均匀、跳距估计误差大以及缺乏对不同节点间通信半径差异的考虑时。本文提出一种基于改进浣熊优化算法(I-ROA)的多通信半径和跳距加权DVHop定位算法。该算法在标准DVHop算法的基础上,引入了多通信半径的概念,允许不同节点具有不同的通信范围,从而更贴近实际应用场景。同时,算法通过一种基于改进浣熊优化算法的权重分配策略,动态调整不同跳距对位置估计的影响,降低跳距估计误差对定位结果的干扰。改进的浣熊优化算法通过引入自适应边界处理机制和新的种群初始化策略,提高了全局搜索能力和收敛速度。仿真结果表明,与传统DVHop算法和一些现有的改进DVHop算法相比,本文提出的算法在不同节点密度、不同通信半径分布和不同跳距估计误差水平下,均能显著提高定位精度和稳定性。

关键词: 无线传感器网络;节点定位;DVHop;浣熊优化算法;多通信半径;跳距加权

1. 引言

随着物联网技术的飞速发展,无线传感器网络作为其重要的组成部分,在各个领域扮演着越来越重要的角色。WSNs通常由大量资源受限的传感器节点组成,这些节点分布式地部署在目标区域,协同完成信息采集、处理和传输任务。在许多应用场景中,获取传感器节点的精确位置信息是至关重要的。例如,在环境监测中,需要知道污染物浓度数据的采集位置;在目标跟踪中,需要确定目标的具体位置;在灾害预警中,需要定位受灾区域的传感器节点。

节点定位技术主要分为基于测距(Range-based)和无需测距(Range-free)两大类。基于测距的定位技术通常利用到达时间(TOA)、到达时间差(TDOA)、接收信号强度指示(RSSI)或到达角度(AOA)等信息来估计节点间的距离,然后通过三边测量、多边测量或最大似然估计等方法计算未知节点的位置。然而,基于测距的方法通常需要额外的硬件支持,增加了节点成本和功耗,且容易受到环境因素(如多径效应、障碍物)的影响,导致测距误差较大。

无需测距的定位技术则不依赖于节点间的精确距离测量,而是利用节点间的连接信息、跳数(Hop Count)等信息进行定位。这类方法实现简单、成本低廉,对硬件要求不高,因此在实际应用中受到广泛关注。DVHop(Distance Vector-Hop)算法是无需测距定位技术的经典代表之一。它通过信标节点(Anchor Node,已知自身位置的节点)广播位置信息和跳数,未知节点接收到信标节点的信息后,记录到达各个信标节点的最小跳数,并利用信标节点的位置信息和跳数计算平均跳距。最后,未知节点利用自身到至少三个信标节点的跳数和平均跳距,通过三边测量或最小二乘法估计自身的位置。

然而,标准DVHop算法存在一些固有的缺陷,主要体现在以下几个方面:

  1. 跳距估计误差:

     标准DVHop算法假设网络中节点的平均跳距是均匀的,并使用所有信标节点计算的平均跳距来估计未知节点到信标节点的距离。然而,在实际网络中,由于节点分布不均匀或障碍物的影响,不同区域的平均跳距可能存在显著差异,这种跳距估计误差会直接影响定位精度。

  2. 通信半径单一:

     标准DVHop算法默认所有节点的通信半径是相同的。但在实际部署中,由于节点硬件差异、环境因素或能源管理策略等原因,不同节点的通信半径可能存在差异,忽略这种差异会降低算法的适用性和精度。

  3. 对跳数权重的忽略:

     标准DVHop算法简单地将跳数乘以平均跳距来估计距离,没有考虑到不同跳数对应的距离估计可靠性可能不同。例如,距离较近的信标节点(跳数较少)提供的距离信息通常比距离较远(跳数较多)的信标节点更可靠。

为了克服标准DVHop算法的这些局限性,研究人员提出了许多改进算法。常见的改进方向包括:优化跳距估计方法,如加权平均跳距、基于区域的平均跳距;利用机器学习或优化算法改进位置估计;引入额外的网络信息等。

本文旨在提出一种新的改进DVHop算法,以解决通信半径差异和跳距估计误差对定位精度的影响。我们引入了多通信半径的概念,并利用改进的浣熊优化算法来优化不同跳距的权重分配,从而更准确地估计未知节点的位置。浣熊优化算法是一种新兴的仿生智能优化算法,具有较强的全局搜索能力和收敛速度。通过对其进行改进,我们期望进一步提升其在复杂优化问题中的表现。

2. 相关工作

DVHop算法作为一种重要的无需测距定位算法,吸引了众多研究者的关注。针对其缺点,提出了多种改进方案。

针对跳距估计误差问题,一些研究提出了加权平均跳距的策略。例如,文献[X]提出根据信标节点到其他信标节点的跳数与实际距离的关系来计算加权平均跳距。文献[Y]则根据信标节点在网络中的连接度来确定权重。还有一些研究尝试利用机器学习方法来预测跳距,例如基于支持向量机(SVM)或神经网络的方法。

为了解决通信半径单一的问题,一些研究开始考虑不同节点的通信半径差异。例如,文献[Z]在仿真中设置了不同的通信半径,并分析了其对DVHop算法性能的影响。然而,这些研究大多停留在仿真阶段,并未提出一套系统的算法来处理和利用多通信半径信息。

关于位置估计阶段,一些研究利用优化算法来改进三边测量或最小二乘法的求解。例如,文献[A]利用遗传算法优化位置估计过程。文献[B]则提出了基于粒子群优化(PSO)的DVHop定位算法。这些优化算法能够更好地处理非线性方程组,提高定位精度。

浣熊优化算法(ROA)是一种新型的基于浣熊觅食行为的智能优化算法。它模拟了浣熊寻找食物时的两种行为:搜索和攻击。ROA具有较强的全局搜索能力和收敛速度,已成功应用于各种优化问题。然而,ROA在处理高维问题或存在复杂约束的问题时,可能存在收敛到局部最优或收敛速度变慢的问题。因此,对ROA进行改进以提高其性能是必要的。

本文提出的算法结合了多通信半径的概念和基于改进浣熊优化算法的跳距加权策略,旨在更全面地考虑实际网络环境,提高DVHop算法的定位精度。

3. 提出的算法

本节详细介绍基于改进浣熊优化算法的多通信半径和跳距加权DVHop定位算法。算法主要包括以下几个阶段:多通信半径模型的引入、跳数信息的获取、改进浣熊优化算法的权重计算以及最终的位置估计。

⛳️ 运行结果

🔗 参考文献

[1] 樊春霞,姜长生.一种基于混沌映射的图像加密算法[J].光学精密工程, 2004.DOI:JournalArticle/5af1c220c095d718d8ec2c84.

[2] 王珊珊,陈艳峰.一种基于混沌的图像加密算法[J].微计算机信息, 2009(9):3.DOI:10.3969/j.issn.1008-0570.2009.09.025.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值