【无人机三维路径规划】基于蜂虎狩猎算法BEH无人机三维路径规划(目标函数:最优成本 路径 高度 威胁 转角)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着无人机技术的飞速发展,其在军事侦察、环境监测、物流运输、灾害救援等领域的应用日益广泛。复杂的三维环境下的无人机路径规划成为保障任务顺利完成的关键问题之一。传统的路径规划算法在处理高维、复杂、动态的环境时往往面临计算效率低下、容易陷入局部最优等挑战。近年来,受到自然界生物群体行为启发的仿生智能算法在求解复杂优化问题方面展现出强大的潜力。其中,蜂虎狩猎算法(Bee-eater Hunting Algorithm,BEH)作为一种新型的群体智能算法,以其独特的狩猎机制和优化策略,为无人机三维路径规划提供了新的思路。

本文旨在深入探讨基于蜂虎狩猎算法(BEH)的无人机三维路径规划方法。通过构建以最优成本、路径长度、飞行高度、避开威胁以及最小化转角为综合目标函数,我们将详细阐述BEH算法在处理复杂无人机三维路径规划问题中的应用原理、实现细节以及潜在优势。文章将首先介绍无人机三维路径规划问题的数学模型和目标函数的构建,随后详细阐述蜂虎狩猎算法的生物学机制及其数学建模过程,并在此基础上构建基于BEH算法的无人机三维路径规划框架。最后,我们将对该方法进行初步分析和讨论,展望其未来的发展方向。

第一章 无人机三维路径规划问题及其目标函数构建

无人机三维路径规划是指在给定的三维空间环境中,为无人机寻找一条从起始点到目标点的最优或次优飞行路径。这个三维空间包含了地形、障碍物、禁飞区等约束条件,以及可能存在的威胁源。无人机的飞行路径需要满足这些约束,并尽可能优化某些性能指标。

1.1 无人机三维空间环境建模

无人机飞行环境通常可以抽象为一个三维栅格地图或连续空间模型。栅格地图将三维空间离散化为一系列小的立方体单元,每个单元可以标记为可行或不可行(障碍物、禁飞区)。连续空间模型则通过数学函数描述地形和障碍物的形状和位置。本文主要考虑栅格地图模型,其优势在于易于处理离散化的约束和威胁信息。

1.2 目标函数构建

无人机路径规划的目标通常是多方面的,需要综合考虑多种因素。为了实现最优的路径,我们构建一个综合目标函数,包括以下几个关键组成部分:

  • 成本最小化(Cost Minimization):

     这通常与飞行时间、能量消耗或特定任务的成本相关。在栅格地图模型中,每个可行路径段(连接两个相邻可行栅格的边)可以赋予一个权重,代表飞越该段的成本。总成本是所有路径段权重的累加。

  • 路径长度最小化(Path Length Minimization):

     飞行路径越短,通常意味着更快的到达和更少的燃料消耗。在栅格地图中,路径长度可以近似为连接路径点之间的欧氏距离之和。

  • 飞行高度优化(Altitude Optimization):

     飞行高度的选择至关重要。过低的高度可能面临地面障碍物和低空威胁,过高的高度可能增加雷达探测的风险或超出无人机的最大升限。因此,需要寻找一个合适的飞行高度范围,并在该范围内优化飞行。

  • 威胁规避最大化(Threat Avoidance Maximization):

     飞行过程中可能面临各种威胁,如敌方雷达、防空导弹、或其他无人机等。路径规划需要尽量避开这些威胁区域或降低在威胁区域停留的时间。我们可以为不同的威胁源设置不同的威胁权重或威胁半径,路径经过威胁区域时会产生相应的惩罚。

  • 转角最小化(Turning Angle Minimization):

     频繁的大幅度转弯会增加无人机的能量消耗,降低飞行的平稳性,甚至可能影响无人机的机动性能。因此,希望路径尽量平滑,减少不必要的转弯。转角大小可以通过连续三个路径点所形成的夹角来衡量,转角越大,惩罚越大。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值