【无人机3D路径规划】基于非支配排序遗传算法NSGAII的无人机3D路径规划研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着无人机技术的飞速发展和广泛应用,无人机在军事侦察、民用巡检、物流配送等领域的潜能日益显现。而实现无人机自主高效地完成任务,路径规划是其中至关重要的一环。传统的二维路径规划已无法满足无人机在复杂三维空间中的飞行需求。本文深入研究了基于非支配排序遗传算法(NSGA-II)的无人机3D路径规划问题。首先,构建了考虑地形、障碍物、飞行高度等多维约束的3D飞行环境模型。其次,详细阐述了NSGA-II算法在无人机3D路径规划中的应用,包括编码方式、种群初始化、选择、交叉、变异以及非支配排序和拥挤距离计算等关键步骤。最后,通过仿真实验对所提出的方法进行了验证,结果表明基于NSGA-II算法的无人机3D路径规划方法能够在复杂环境中搜索到一系列 Pareto 最优解,为无人机安全、高效、经济地完成任务提供多维度选择,具有较高的实用价值。

关键词: 无人机;3D路径规划;非支配排序遗传算法;NSGA-II;多目标优化;复杂环境

引言

无人机(Unmanned Aerial Vehicle, UAV)作为一种灵活、高效的自动化平台,其应用领域正以前所未有的速度拓展。为了充分发挥无人机的潜力,使其能够独立自主地完成预设任务,路径规划技术扮演着核心角色。路径规划旨在为无人机在给定环境内确定一条从起始点到目标点的最优或近似最优的飞行路径,同时需要满足安全性、效率、经济性等一系列约束。

传统的路径规划方法,如Dijkstra算法、A*算法等,主要适用于二维平面环境下的单目标优化问题。然而,无人机的飞行活动发生在复杂的三维空间中,不仅需要考虑水平方向上的障碍物避让,还需要兼顾垂直方向上的地形起伏和高度限制。此外,实际无人机路径规划往往涉及多个相互冲突的目标,例如最短路径、最低能耗、最高隐蔽性等。单一目标的优化往往会导致其他目标的恶化,因此,多目标优化方法在无人机3D路径规划中显得尤为重要。

近年来,基于仿生智能的算法在解决复杂优化问题方面展现出强大的能力。遗传算法(Genetic Algorithm, GA)作为一种经典的全局搜索优化算法,因其鲁棒性和并行性,被广泛应用于各种路径规划问题。然而,标准的遗传算法通常只能处理单目标优化问题。非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II, NSGA-II)是一种改进的多目标遗传算法,它通过引入非支配排序和拥挤距离的概念,能够有效地处理多目标优化问题,并获得一组 Pareto 最优解集。这些 Pareto 解代表了在不同目标之间权衡的最佳平衡点,为决策者提供了多样化的选择。

本文旨在将NSGA-II算法应用于无人机3D路径规划问题,构建一个能够应对复杂三维环境、考虑多目标优化需求的路径规划框架。通过对算法原理和实现的详细阐述,并结合仿真实验进行验证,证明NSGA-II在解决无人机3D路径规划问题中的有效性和优越性。

1. 无人机3D飞行环境建模

无人机的飞行环境是一个复杂的三维空间,需要对其进行有效的建模,以便算法能够进行路径搜索和评估。本文主要考虑以下几个方面的环境因素:

  • 地形模型:

     地形是影响无人机飞行高度和路径选择的关键因素。通常采用数字高程模型(Digital Elevation Model, DEM)来表示地形的高度信息。可以将环境空间离散化为一系列网格点,每个网格点都存储其对应的海拔高度。

  • 障碍物模型:

     障碍物是指无人机在飞行过程中需要避开的物理实体,如建筑物、高塔、树木等。障碍物可以建模为具有一定高度的几何体,如立方体、圆柱体等。在离散化的网格环境中,可以将障碍物覆盖的网格点标记为不可通行区域。

  • 禁飞区模型:

     除物理障碍物外,还可能存在一些由于安全、隐私等原因设定的禁飞区域,如机场上空、军事基地附近等。这些区域可以建模为具有特定边界的三维区域,无人机在飞行过程中必须避开这些区域。

  • 飞行高度限制:

     无人机通常有最低和最高飞行高度限制。最低飞行高度可能由地形、建筑物高度或法规要求决定,而最高飞行高度则受到无人机性能或空域管制的影响。路径规划需要确保无人机在整个飞行过程中满足这些高度约束。

为了便于算法处理,本文采用基于网格的离散化建模方法。将整个三维环境空间划分为若干个大小相同的立方体网格单元。每个网格单元都存储其是否被地形、障碍物或禁飞区占据的信息,以及其对应的海拔高度。起始点和目标点则对应于环境中的特定网格单元。

2. 基于NSGA-II的无人机3D路径规划

2.1 问题描述

无人机3D路径规划问题可以定义为:在给定具有地形、障碍物、禁飞区和高度限制的3D飞行环境中,寻找一条从起始点 𝑆S 到目标点 𝑇T 的飞行路径,使得多个目标函数同时达到最优或近似最优。本文主要考虑以下几个典型的目标函数:

  • 最短路径:

     最小化路径的长度,即路径上所有连续网格单元之间距离的总和。

  • 最低能耗:

     最小化无人机在飞行过程中消耗的能量。能耗通常与飞行距离、速度、高度变化以及气流等因素相关。在简化的模型中,可以近似为与路径长度或飞行时间成正比。

  • 最低风险:

     最小化无人机在飞行过程中遭遇风险的可能性。风险可能来源于地形碰撞、障碍物碰撞、被探测到的概率等。可以通过建立风险地图,将环境中的风险程度量化,然后计算路径上各点风险值的累积或最大值。

本研究将重点关注最短路径和最低风险这两个相互冲突的目标。通常情况下,最短路径可能穿越高风险区域,而低风险路径可能较长。

2.2 NSGA-II算法原理

NSGA-II算法是一种经典的多目标遗传算法,其核心思想是通过非支配排序和拥挤距离来选择优秀个体,从而在不同代之间保留并生成具有良好多样性的 Pareto 最优解集。NSGA-II算法的主要步骤如下:

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值