【电力系统】基于非支配排序遗传算法NSGAII的综合能源优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

  • NSGA - II 是一种多目标优化算法,它基于遗传算法的基本框架,通过模拟自然进化过程中的选择、交叉和变异等操作,来寻找最优解。在综合能源优化调度中,通常将多个相互冲突的目标,如能源成本最小化、环境影响最小化、系统可靠性最大化等,作为优化目标。NSGA - II 通过非支配排序的方法,将种群中的个体按照其支配关系进行分层,然后在每一层中选择优秀的个体,使得算法能够在多个目标之间找到较好的平衡,最终得到一组 Pareto 最优解,为决策者提供多种可行的调度方案。

实施步骤

  1. 问题建模

    :确定综合能源系统的组成部分,包括电力、热力、天然气等能源子系统,以及它们之间的耦合关系。建立以能源成本、环境影响、系统可靠性等为目标的多目标优化模型,同时考虑系统的各种约束条件,如功率平衡约束、设备运行约束、能源转换效率约束等。

  2. 编码表示

    :将综合能源系统的调度方案进行编码,通常采用二进制编码或实数编码方式。例如,可以将每个设备的运行状态、出力水平等参数编码为染色体的基因位,形成一个个体表示。

  3. 种群初始化

    :随机生成一个初始种群,种群中的每个个体代表一个可能的综合能源调度方案。初始种群的规模通常根据问题的复杂程度和计算资源来确定。

  4. 适应度评估

    :根据建立的多目标优化模型,计算每个个体的适应度值,即各个目标函数的值。对于 NSGA - II 算法,需要对每个个体进行非支配排序,确定其在种群中的层级,并计算拥挤度指标,用于衡量个体在其所在层级中的分布密度。

  5. 选择操作

    :基于非支配排序和拥挤度指标,采用轮盘赌选择、锦标赛选择等方法,从当前种群中选择优秀的个体,作为父代个体,用于产生下一代种群。选择过程中,优先选择层级较高(即非支配程度更好)的个体,对于同一层级的个体,选择拥挤度较大(即分布较稀疏)的个体,以保持种群的多样性。

  6. 交叉和变异操作

    :对选择出的父代个体进行交叉和变异操作,以产生新的子代个体。交叉操作通过交换父代个体的部分基因位,产生具有双亲特征的子代个体;变异操作则以一定的概率对个体的基因位进行随机改变,以增加种群的多样性,避免算法陷入局部最优。

  7. 种群更新

    :将产生的子代个体与当前种群中的个体合并,形成一个新的种群。然后对新种群进行非支配排序和拥挤度计算,选择出一定数量的优秀个体,组成下一代种群,重复步骤 4 - 7,直到满足预设的终止条件,如达到最大迭代次数、目标函数值收敛等。

  8. 结果分析与决策

    :算法终止后,得到一组 Pareto 最优解,这些解代表了在不同目标之间取得平衡的综合能源调度方案。决策者可以根据实际需求和偏好,从 Pareto 最优解集中选择最合适的方案进行实施。

⛳️ 运行结果

🔗 参考文献

[1] 夏季,华志刚,彭鹏,等.基于非支配排序遗传算法的无约束多目标优化配煤模型[J].中国电机工程学报, 2011, 31(2):6.DOI:CNKI:SUN:ZGDC.0.2011-02-016.

[2] 孟祥众,石秀华,杜向党.基于非支配排序遗传算法的振动主动控制优化方法[J].鱼雷技术, 2008, 16(004):27-30.DOI:10.3969/j.issn.1673-1948.2008.04.007.

[3] Jialin W , Li X , Zhengguo W U ,et al.基于快速非支配排序遗传算法的船舶电力系统多目标故障重构[J]. 2012.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值