✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略,是一种为提高区域电网新能源消纳率、降低运行成本及提高供电可靠性而提出的调度策略1。以下是具体介绍:
策略框架1
- 日前调度计划
:综合考虑储能电站、负荷侧各类需求响应资源的多时间尺度特性,制定较为粗略但全面的调度计划,对一天内的发电、储能和用电进行初步安排。
- 日内滚动优化
:根据最新的预测数据和实际运行情况,在日内对调度计划进行滚动调整,提高调度的精度和适应性。
- 实时协调控制
:针对电网实时运行中的突发情况或短期的功率波动,进行快速的协调控制,确保电网的稳定运行。
考虑的特性分布
- 储能电站特性
:
- 抽水蓄能储能电站
:由上水库、引水系统、抽水蓄能机组和下水库组成。在电力系统高峰负荷时发电,在负荷低谷时抽水,实现机械能和电能的转化,其调节能力较强,但建设周期长、位置受限。
- 电化学储能电站
:通过蓄电池或超级电容技术实现电能与化学能的转化,具有反应速度快、灵活调节能力强、能量密度大、环境适应性强、可小型分散配置且建设周期短等优势,能较好地平抑分布式电源的出力波动。
- 抽水蓄能储能电站
- 负荷侧需求响应资源特性
:
- 电价型(PDR)
:通过制定不同的电价策略如分时电价、实时电价和尖峰电价等改变用户的用电方式,用户会根据电价信号调整用电行为,一般响应时间相对较长。
- 激励型(IDR)
:由实施机构制定优惠政策激励用户响应调度信号,包括直接负荷控制、可中断负荷、需求侧竞价和紧急需求响应等,响应速度相对较快,但实施难度和成本较高。
- 电价型(PDR)
调度模型建立1
以系统运行成本、弃风惩罚成本、失负荷惩罚成本为目标函数,构建多时间尺度调度模型。系统运行成本包括发电成本、储能设备的充放电成本等;弃风惩罚成本是为了鼓励充分利用风电等新能源,对弃风行为进行经济惩罚;失负荷惩罚成本则是对无法满足用户用电需求的情况进行惩罚,以保证供电可靠性。
优化求解
通过 MATLAB 平台调用商用软件包 CPLEX 完成混合整数规划优化,得到最优的调度方案,确定各个时段电源的出力、储能电站的充放电状态以及负荷的调整量等1。
该调度策略通过考虑特性分布的储能电站接入,以及多时间尺度的协调调度,能够有效提高 “源–储–荷” 系统的新能源消纳率,降低弃风率,实现系统运行成本最优,提升电力系统的经济性和可靠性
⛳️ 运行结果
🔗 参考文献
📣 部分代码
%YALMIPDEMO Brief tutorial and examples.
%
% See also YALMIPTEST
% Author Johan L鰂berg
% $Id: yalmipdemo.m,v 1.7 2007-04-04 07:30:58 joloef Exp $
disp('Please run examples from YALMIP Wiki instead.')
disp('The examples here are obsolute.')
return
% Check for paths
if ~(exist('socpex')==2)
disp('You have to set the path to the demo library (...\yalmip\demos\)')
return;
end
i = 1;
problems{i}.class = 0;
problems{i}.info = 'Getting started, the basics';
problems{i}.call = 'basicsex';i = i+1;
problems{i}.class = 1;
problems{i}.info = 'Linear and quadratic programming';
problems{i}.call = 'regressex';i = i+1;
problems{i}.class = 1;
problems{i}.info = 'Second order cone programming';
problems{i}.call = 'socpex';i = i+1;
problems{i}.class = 2;
problems{i}.info = 'Lyapunov stability (SDP)';
problems{i}.call = 'stabilityex';i = i+1;
problems{i}.class = 0;
problems{i}.info = 'Model predictive control (LP,QP,SDP)';
problems{i}.call = 'mpcex';i = i+1;
problems{i}.class = 2;
problems{i}.info = 'Determinant maximization (MAXDET)';
problems{i}.call = 'maxdetex';i = i+1;
problems{i}.class = 2;
problems{i}.info = 'Decay-rate estimation (SDP)';
problems{i}.call = 'decayex';i = i+1;
problems{i}.class = 0;
problems{i}.info = 'Mixed integer programming (MILP,MIQP,MICP)';
problems{i}.call = 'milpex';i = i+1;
problems{i}.class = 3;
problems{i}.info = 'Working with polynomial expressions';
problems{i}.call = 'nonlinex';i = i+1;
problems{i}.class = 3;
problems{i}.info = 'Working with nonlinear operators';
problems{i}.call = 'nonlinopex';i = i+1;
problems{i}.class = 3;
problems{i}.info = 'Nonlinear semidefinite programming using PENBMI (BMI)';
problems{i}.call = 'bmiex1';i = i+1;
problems{i}.class = 3;
problems{i}.info = 'Decay-rate estimation revisited with PENBMI (BMI)';
problems{i}.call = 'decaybmiex';i = i+1;
problems{i}.class = 3;
problems{i}.info = 'Simultaneous stabilization with PENBMI (BMI)';
problems{i}.call = 'simstabex';i = i+1;
problems{i}.class = 4;
problems{i}.info = 'Sum-of-squares decompositions';
problems{i}.call = 'sosex';i = i+1;
problems{i}.class = 4;
problems{i}.info = 'Polynomial programming using moment-relaxations';
problems{i}.call = 'momentex';i = i+1;
problems{i}.class = 4;
problems{i}.info = 'Global nonlinear programming';
problems{i}.call = 'globalex';i = i+1;
problems{i}.class = 5;
problems{i}.info = 'Multi-parametric programming';
problems{i}.call = 'mptex';i = i+1;
problems{i}.class = 5;
problems{i}.info = 'KYP problems (SDP)';
problems{i}.call = 'kypdex';i = i+1;
problems{i}.class = 5;
problems{i}.info = 'Posynomial geometric programming';
problems{i}.call = 'geometricex';i = i+1;
problems{i}.class = 5;
problems{i}.info = 'Complex-valued problems';
problems{i}.call = 'complexex';i = i+1;
problems{i}.class = 5;
problems{i}.info = 'Dual variables';
problems{i}.call = 'dualex';i = i+1;
while (1)
clc
echo off
disp(' ')
disp(' ')
disp(' YALMIP DEMO')
disp(' ')
oldclass = 0;
for i = 1:length(problems)
% if problems{i}.class == oldclass
% fprintf('\n');
% end
fprintf([' %1.2d) ' problems{i}.info '\n'],i);
% oldclass = problems{i}.class;
end
disp(' ');
disp(' 0) quit')
inp = input('Select demo: ');
try
if ~isempty(inp)
switch(inp)
case 0
return
otherwise
if inp<=length(problems)
eval(problems{inp}.call);
end
end
end
catch
disp(lasterr)
pause
end
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇