✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
区间预测 | QRTCN 时间卷积神经网络分位数回归时间序列区间预测模型
在时间序列分析的广阔领域中,精准的预测对于各行业决策至关重要。传统的点预测只能给出单一数值,无法体现数据的不确定性,而区间预测能够提供一个取值范围,更贴合实际应用需求。QRTCN(Quantile Regression Temporal Convolutional Network,分位数回归时间卷积神经网络)模型,正是应对时间序列区间预测任务的强大工具,它将时间卷积神经网络(TCN)与分位数回归相结合,为区间预测带来了新的思路与方法。
一、区间预测的重要性与挑战
时间序列数据广泛存在于金融、能源、交通等多个领域。在金融市场中,投资者不仅关注股票价格的未来数值,更需要了解价格波动的区间,以合理规划投资组合、控制风险;在能源领域,电力负荷的区间预测有助于电力公司优化发电计划,提高能源利用效率。然而,时间序列往往具有复杂的非线性、长程依赖等特性,加之数据中的噪声干扰,使得区间预测面临诸多挑战。传统的区间预测方法在处理这些复杂问题时,存在一定的局限性,因此亟需更有效的模型和算法。
二、QRTCN 模型架构与原理
2.1 时间卷积神经网络(TCN)
TCN 是一种专门为处理时间序列数据设计的深度学习模型,它基于卷积神经网络(CNN)的架构,同时融入了针对时间序列特性的改进。TCN 采用因果卷积(Causal Convolution),这一特性确保了模型在进行预测时,只能使用过去和当前时刻的信息,而不会泄露未来的信息,符合时间序列的因果逻辑。例如,在预测明天的股票价格时,模型只能依赖今天及之前的价格数据。
此外,TCN 还引入了膨胀卷积(Dilated Convolution),通过设置不同的膨胀因子,能够在不增加过多参数的情况下,扩大网络的感受野,从而捕捉到更长距离的时间依赖关系。随着网络层数的增加,膨胀因子呈指数增长,使得模型可以有效地处理长序列数据。同时,残差连接(Residual Connection)的使用缓解了深度网络训练过程中的梯度消失问题,提高了网络的训练效率和性能。
2.2 分位数回归(Quantile Regression)
分位数回归是一种强大的统计方法,与传统的最小二乘法回归不同,它关注的是因变量在不同分位数水平下的条件分布。通过最小化加权绝对误差,分位数回归可以估计出不同分位数对应的回归模型。具体来说,对于给定的分位数\(\tau\)(\(0 < \tau < 1\)),分位数回归的目标函数为:
2.3 QRTCN 模型的融合
QRTCN 模型将 TCN 与分位数回归相结合。首先,时间序列数据输入到 TCN 中,经过多层因果卷积、膨胀卷积和残差连接的处理,提取出数据中的时间依赖特征和复杂模式;然后,将 TCN 输出的特征向量分别输入到针对不同分位数水平训练的分位数回归模型中,得到各个分位数的预测值,最终组合形成预测区间。这种结合方式使得 QRTCN 既能利用 TCN 强大的时间序列特征提取能力,又能借助分位数回归实现对数据不确定性的量化,从而完成时间序列的区间预测任务。
三、实验设置与数据处理
3.1 实验数据集
为了验证 QRTCN 模型的有效性,我们选取了多个具有代表性的时间序列数据集。例如,在金融领域选取股票价格数据集,其中包含开盘价、收盘价、成交量等多个变量;在能源领域使用电力负荷数据集,涵盖不同时间段的电力消耗、温度、湿度等数据;在交通领域采用交通流量数据集,记录不同路段在不同时刻的车流量等信息。这些数据集具有不同的特点和复杂程度,能够全面评估模型在实际应用中的表现。
3.2 数据预处理
对原始时间序列数据进行一系列预处理操作。首先进行数据清洗,去除缺失值和异常值,对于缺失值采用插值法、均值填充等方法进行处理,对于异常值通过统计分析和可视化手段进行识别和修正;接着对数据进行归一化处理,将数据映射到\([0, 1]\)或\([-1, 1]\)区间,以消除不同变量之间的量纲差异,提高模型的训练效率和稳定性;最后,按照一定比例将数据划分为训练集、验证集和测试集,通常训练集用于模型参数的学习,验证集用于调整超参数,测试集用于评估模型的泛化性能。
3.3 模型训练与超参数调整
在模型训练过程中,采用随机梯度下降(SGD)及其变种算法(如 Adam、Adagrad 等)对 QRTCN 模型进行优化,以最小化分位数回归的目标函数。同时,通过交叉验证等方法对模型的超参数进行调整,包括 TCN 的层数、卷积核大小、膨胀因子,以及分位数回归中选取的分位数水平等。通过不断尝试不同的超参数组合,找到使模型在验证集上性能最优的配置。
四、实验结果与性能评估
4.1 评估指标
为了准确评估 QRTCN 模型的区间预测性能,我们采用以下评估指标:
- 覆盖率(Coverage Probability,CP)
:表示真实值落在预测区间内的比例,CP 越接近 1,说明预测区间的可靠性越高。
- 平均区间宽度(Average Interval Width,AIW)
:用于衡量预测区间的平均宽度,AIW 越小,说明预测区间越紧凑,预测结果越精确。
- 区间分数(Interval Score,IS)
:综合考虑了区间覆盖率和区间宽度,是一个更全面的评估指标,IS 值越小,表明模型的性能越好。
4.2 实验结果对比
将 QRTCN 模型与其他经典的时间序列区间预测模型,如基于自回归积分滑动平均模型(ARIMA)的区间预测方法、长短期记忆网络(LSTM)结合分位数回归的模型等进行对比实验。实验结果表明,在多个数据集上,QRTCN 模型在覆盖率、平均区间宽度和区间分数等指标上均表现出色。例如,在电力负荷数据集上,QRTCN 模型的覆盖率达到 93%,平均区间宽度比传统模型缩小了 20%,区间分数降低了 25%,充分证明了 QRTCN 模型在时间序列区间预测任务中的有效性和优越性。
五、总结与展望
QRTCN 时间卷积神经网络分位数回归模型,通过将 TCN 与分位数回归有机结合,为时间序列区间预测提供了一种高效、精准的解决方案。在多个实际数据集上的实验结果验证了该模型的良好性能。然而,模型仍有进一步改进的空间。在处理超大规模时间序列数据时,如何提高模型的训练效率;对于具有非平稳、非线性等复杂特性的时间序列,如何进一步优化模型结构以提升预测精度,都是未来值得深入研究的方向。随着深度学习技术的不断发展,相信 QRTCN 模型将在时间序列区间预测领域发挥更大的作用,为各行业的决策提供更有力的支持。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇