✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
核主成分分析(KPCA)
- 原理
:主成分分析(PCA)是一种常用的数据降维方法,通过线性变换将原始数据投影到低维空间,保留主要信息。而核主成分分析(KPCA)引入核函数,将原始数据映射到高维特征空间,然后在高维空间中进行主成分分析。常见的核函数有径向基函数(RBF)、多项式核函数等。通过 KPCA,可以处理非线性数据,提取数据的非线性特征,降低数据维度,减少计算量,同时保留数据的重要信息,提高后续模型的训练效率和预测精度。
- 作用
:在分类预测中,KPCA 可以对原始数据进行预处理,将高维数据映射到低维空间,去除数据中的噪声和冗余信息,突出数据的主要特征,为最小二乘支持向量机(LSSVM)提供更优质的输入数据,提高 LSSVM 的分类性能。
改进麻雀优化算法(ISSA)
- 麻雀优化算法(SSA)原理
:麻雀优化算法模拟麻雀觅食和反捕食行为,通过迭代更新麻雀的位置来搜索最优解。在算法中,麻雀分为生产者和消费者,根据适应度值调整位置,同时考虑麻雀的警觉行为,避免算法陷入局部最优。
- 改进思路
:改进麻雀优化算法(ISSA)可以从多个方面进行,如调整算法的参数(如惯性权重、学习因子等),改进麻雀的位置更新策略,引入局部搜索机制等。通过改进,可以提高算法的搜索能力和收敛速度,使算法能够更准确地找到最优解。
- 作用
:在 KPCA 处理后的数据基础上,ISSA 用于优化 LSSVM 的参数(如惩罚参数C和核函数参数γ)。通过优化参数,LSSVM 能够更好地拟合数据,提高分类预测的准确性。
最小二乘支持向量机(LSSVM)
- 原理
:最小二乘支持向量机是支持向量机(SVM)的一种变体,将原始的二次规划问题转化为线性方程组的求解,降低了计算复杂度。LSSVM 通过寻找最优超平面,将不同类别的数据分开,实现分类功能。在分类预测中,LSSVM 根据输入数据的特征向量和对应的类别标签,训练模型,然后根据训练好的模型对新的数据进行分类预测。
- 优势
:LSSVM 具有良好的泛化能力,能够处理小样本数据,对于非线性分类问题也有较好的表现。
KPCA-ISSA-LSSVM 组合流程
- 数据预处理
:使用 KPCA 对原始数据进行降维和特征提取,得到低维的特征向量。
- 参数优化
:利用 ISSA 对 LSSVM 的参数(C和γ)进行优化,找到最优的参数组合。
- 模型训练
:将经过 KPCA 处理的数据和优化后的参数输入到 LSSVM 中进行训练,得到训练好的分类模型。
- 分类预测
:将新的数据输入到训练好的模型中,进行分类预测,得到预测结果。
应用优势
- 提高分类精度
:KPCA 处理非线性数据,提取主要特征,ISSA 优化 LSSVM 参数,使 LSSVM 能够更好地拟合数据,从而提高分类精度。
- 处理小样本数据
:LSSVM 本身适用于小样本数据,结合 KPCA 的降维和 ISSA 的参数优化,能够在小样本情况下实现准确的分类预测。
- 适应复杂数据
:对于复杂的非线性数据,KPCA-ISSA-LSSVM 组合能够有效地处理数据的非线性关系,提高模型的适应性和泛化能力。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
% This function initialize the first population of search agents
function Positions=initialization(SearchAgents_no,dim,ub,lb)
Boundary_no= size(ub,2); % numnber of boundaries
% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end
% If each variable has a different lb and ub
if Boundary_no>1
for i=1:dim
ub_i=ub(i);
lb_i=lb(i);
Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
end
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇