✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在当今数字化时代,多变量时间序列数据广泛存在于金融市场、能源管理、交通流量等诸多领域。准确的多变量时间序列预测,不仅能帮助企业提前规划资源、规避风险,还能为政策制定提供有力依据。然而,多变量时间序列往往具有复杂的非线性关系、长距离依赖以及变量间的相互作用,传统的预测模型难以有效应对这些挑战。近年来,深度学习模型凭借强大的特征提取和模式识别能力,在时间序列预测领域崭露头角,其中,TCN-BiGRU(时间卷积双向门控循环单元)模型成为了多变量时间序列预测的一把 “金钥匙”。
一、多变量时间序列预测的挑战
多变量时间序列包含多个维度的信息,各变量之间相互关联、相互影响,形成复杂的动态系统。以电力系统为例,发电量、用电量、气温、电价等多个变量随时间变化,它们之间存在着非线性的耦合关系,一个变量的变化可能会引发其他变量的连锁反应。同时,多变量时间序列还可能存在长距离依赖问题,即当前时刻的状态不仅与近期时刻有关,还可能受到较远时刻数据的影响。此外,数据中的噪声、异常值以及变量的非平稳性,都给预测工作带来了巨大困难。
二、TCN:时间卷积网络的力量
2.1 TCN 模型简介
时间卷积网络(Temporal Convolutional Network,简称 TCN)是一种基于卷积神经网络(CNN)的时间序列处理模型。与传统的 CNN 不同,TCN 通过因果卷积(Causal Convolution)、扩张卷积(Dilated Convolution)和残差连接(Residual Connection)等技术,使其更适合处理时间序列数据。
2.2 TCN 的核心技术
因果卷积是 TCN 的关键特性之一,它确保了在预测过程中,模型只能利用过去和当前时刻的信息,而不会 “偷看” 未来的数据,这符合时间序列预测的实际场景。扩张卷积则通过设置不同的扩张因子,能够在不增加参数数量的情况下,扩大卷积核的感受野,从而有效捕捉长距离依赖关系。残差连接则解决了深层网络训练过程中的梯度消失问题,使得网络可以更容易地进行训练和优化。
2.3 TCN 的优势
TCN 具有并行计算能力,可以同时处理多个时间步的数据,相比循环神经网络(RNN),训练速度更快。而且,其固定的卷积核大小和结构,使得模型的计算复杂度相对稳定,不会随着序列长度的增加而急剧上升。
三、BiGRU:双向门控循环单元的魅力
3.1 BiGRU 模型简介
门控循环单元(GRU)是 RNN 的一种变体,通过引入门控机制,有效解决了传统 RNN 中存在的梯度消失和梯度爆炸问题,能够更好地处理长序列数据。而双向门控循环单元(BiGRU)则在 GRU 的基础上,由两个方向相反的 GRU 组成,分别从正向和反向对序列进行处理,从而能够同时利用过去和未来的信息,进一步增强模型对序列特征的提取能力。
3.2 BiGRU 的结构与原理
BiGRU 中的每个 GRU 单元包含更新门和重置门,更新门用于控制前一时刻的隐藏状态信息传递到当前时刻的程度,重置门则用于控制当前输入与前一时刻隐藏状态的结合程度。正向 GRU 从序列的起始时刻向结束时刻传递信息,反向 GRU 从序列的结束时刻向起始时刻传递信息,最后将两个方向的隐藏状态进行拼接或融合,作为模型的输出。
3.3 BiGRU 的优势
BiGRU 能够充分利用序列的双向信息,对于具有前后依赖关系的时间序列数据,能够更全面地捕捉序列特征,相比单向的 GRU 或 RNN,在预测精度上有显著提升。
四、TCN-BiGRU:强强联合的预测神器
4.1 TCN-BiGRU 模型架构
TCN-BiGRU 模型结合了 TCN 和 BiGRU 的优势。在模型结构上,通常先使用 TCN 对多变量时间序列数据进行初步处理,通过因果卷积和扩张卷积提取数据中的局部和长距离特征,同时利用残差连接保证网络的训练效率。然后,将 TCN 的输出作为 BiGRU 的输入,BiGRU 通过双向的信息传递,进一步挖掘数据中过去和未来信息的关联,捕捉变量之间的复杂依赖关系。最后,经过全连接层和激活函数,输出预测结果。
4.2 TCN-BiGRU 在多变量时间序列预测中的优势
TCN-BiGRU 模型凭借 TCN 的并行计算和长距离依赖捕捉能力,以及 BiGRU 的双向信息利用优势,能够高效处理多变量时间序列数据中的复杂关系。一方面,TCN 可以快速处理多个变量在不同时间步的信息,提取出时间序列的整体特征;另一方面,BiGRU 能够从双向角度深入分析变量之间的相互影响,准确捕捉变量的变化趋势和依赖模式,从而在多变量时间序列预测中实现更高的精度和更好的稳定性。
4.3 实际应用案例
在金融领域,利用 TCN-BiGRU 模型对股票价格、交易量、宏观经济指标等多变量时间序列进行预测,可以帮助投资者制定更合理的投资策略;在能源管理中,对发电量、用电量、气温等变量的预测,能够优化能源调度,提高能源利用效率;在交通领域,通过对车流量、车速、天气状况等多变量的预测,有助于实现智能交通管理,缓解交通拥堵。大量的实验和实际应用表明,TCN-BiGRU 模型在这些场景下均取得了优于传统模型和单一模型的预测效果。
⛳️ 运行结果
📣 部分代码
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
or_dim = size(result, 2); % 原始特征+输出数目
kim = 4; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end
%% 数据集分析
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇